个人信息:Personal Information
副教授 研究生导师
主要任职:副教授
性别:男
毕业院校:清华大学
学历:博士研究生毕业
学位:工学博士学位
在职信息:在岗
所在单位:计算机科学与技术学院
入职时间:2021-07-30
联系方式:lipengyong@xidian.edu.cn
电子邮箱:
个人简介:Personal Profile
李朋勇,博士,计算机科学与技术学院,副教授,研究生导师,毕业于清华大学生物医学工程系。中国人工智能学会智慧医疗专业委员会委员。主要研究方向为基于人工智能的药物研发,近年来基于图神经网络、自监督学习、强化学习等深度学习算法,围绕药物性质预测、药物靶点相互作用、药物设计生成等任务展开研究工作。在Nature Conmputatinal Science、IJCAI、Briefings in Bioinformatics等相关领域主流期刊和学术会议发表论文十余篇,其中近5年以第一作者发表中科院一区论文6篇,CCF A类学术会议论文1篇。作为合作单位负责人主持国家自然科学联合基金重点项目,主持国家自然科学青年基金。指导学生获工信部举办的全国人工智能创新应用大赛一等奖,国家级大学生创新创业计划等。
发表文章
Li, P., Zhang K., et.al. A deep learning approach for rational ligand generation with toxicity control via reactive building blocks. Nature Computational Science. 2024.
Li, P., Jiang, Z., et al., Improving drug response prediction via integrating gene relationships with deep learning. Briefings in Bioinformatics. 2024.
Li, P., Wang, J., Qiao, Y., Chen, H., Yu, Y., Yao, X., et al. An effective self-supervised framework for learning expressive molecular global representations to drug discovery. Briefings in Bioinformatics. 2021, 22(6): bbab109
Li, P.#, Li, Y.#, Hsieh, C. Y., Zhang, S., Liu, X., Liu, H., et al. Trimnet: learning molecular representation from triplet messages for biomedicine. Briefings in Bioinformatics, 2021, 22(4): bbaa266.
Li, P.#, Wang, J.#, Li, Z., Qiao, Y., Liu, X., Ma, F., et al. Pairwise Half-graph Discrimination: A Simple Graph-level Self-supervised Strategy for Pre-training Graph Neural Networks. IJCAI 2021.
Liu, X.#, Li, P.#, Meng, F., Zhou, H., Zhong, H., Zhou, J., et al. Simulated annealing for optimization of graphs and sequences. Neurocomputing, 2021, 465, 310-324.
Li, P., Sun, M., Xu, Z., Liu, X., Zhao, W., & Gao, W. Site-selective in situ growth-induced self-assembly of protein–polymer conjugates into pH-responsive micelles for tumor microenvironment triggered fluorescence imaging. Biomacromolecules, 2018, 19(11), 4472-4479.
Li, Y., Li, P., Yang, X., Hsieh, C. Y., Zhang, S., Wang, X., et al. Introducing block design in graph neural networks for molecular properties prediction. Chemical Engineering Journal, 2021, 414, 128817.
Liu, X., Luo, Y., Li, P., Song, S., & Peng, J. Deep geometric representations for modeling effects of mutations on protein-protein binding affinity. PLoS computational biology, 2021, 17(8), e1009284.
Ye, X., Li, Z., Ma, F., Yi, Z., Wang, J., Li, P., et al. CandidateDrug4Cancer: An Open Molecular Graph Learning Benchmark on Drug Discovery for Cancer. relation (QSAR), 2018, 4(54869), 73770.
Qiao, Y., Chen, H., Cao, L., Chen, L., Li, P., et al.. Deep Learning Track: Dense Matching for Nested Ranking. PASH at TREC, 2020
Li, Y., Hsieh, C. Y., Lu, R., Gong, X., Wang, X., Li, P., ... & Yao, X. (2022). An adaptive graph learning method for automated molecular interactions and properties predictions. Nature Machine Intelligence, 4(7), 645-651.