电子科技 ›› 2020, Vol. 33 ›› Issue (7): 67-70.doi: 10.16180/j.cnki.issn1007-7820.2020.07.014

• • 上一篇    

基于灰色预测算法的图情数据分析技术

付新贺,袁永旭   

  1. 山西医科大学 管理学院,山西 太原030001
  • 收稿日期:2019-05-08 出版日期:2020-07-15 发布日期:2020-07-15
  • 作者简介:付新贺(1990-),女,硕士研究生。研究方向:医学信息计量。
  • 基金资助:
    山西省自然科学基金(ZK63928517)

Graphic Data Analysis Technology Based on Grey Prediction Algorithm

FU Xinhe,YUAN Yongxu   

  1. School of Management,Shanxi Medical University,Taiyuan 030001,China
  • Received:2019-05-08 Online:2020-07-15 Published:2020-07-15
  • Supported by:
    Natural Science Foundation of Shanxi(ZK63928517)

摘要:

灰色预测是图情数据预测分析的常用算法之一,但传统的灰色预测模型在预测低光滑性数据序列时准确率低。针对此问题,文中提出了一种差值加权光滑处理方法,并采用欧拉修正的方式弥补误差。将改进后的灰色预测模型在某图书馆借阅数据库上进行测试,测试与分析结果表明,该模型预测结果相对误差的方差由0.32减至0.142,平均相对误差绝对值减小了4.458%。改进的灰色预测模型能够处理光滑度较低的图书馆借阅数据,并准确地对其进行预测,为图书馆优化工作效率与信息化建设提供支撑。

关键词: 灰色预测, 差值加权, 光滑度, 欧拉修正, 白化微分方程

Abstract:

Grey prediction is one of the commonly used algorithms for forecasting and analyzing situation data, but the accuracy of traditional grey prediction model is low in forecasting low smoothness data series. To solve this problem, a difference weighted smoothing method was proposed, and the Euler correction method was used to compensate for the error. The improved grey prediction model was tested on a library borrowing database. The test and analysis results showed that the variance of the relative error of the prediction results of the model had been reduced from 0.32 to 0.142, and the absolute value of the average relative error had been reduced by 4.458%. The improved grey prediction model could process the library borrowing data with low smoothness, predict it accurately, and provide a reference basis for improving the work efficiency and development and construction of the library.

Key words: grey prediction, weighted difference, smoothness, Euler correction, whitening differential equation

中图分类号: 

  • TP301.6