电子科技 ›› 2022, Vol. 35 ›› Issue (1): 35-39.doi: 10.16180/j.cnki.issn1007-7820.2022.01.006

• • 上一篇    下一篇

基于深度学习的有遮挡人脸识别方法研究

程晓雅,张雷   

  1. 运城学院 数学与信息技术学院,山西 运城 044000
  • 收稿日期:2021-01-18 出版日期:2022-01-15 发布日期:2022-02-24
  • 作者简介:程晓雅(1988-),女,讲师。研究方向:智能优化算法。
  • 基金资助:
    山西省高等学校科技创新项目(2019L0855);运城学院科研项目(CY-2019035)

Research on Occluded Face Recognition Method Based on Deep Learning

CHENG Xiaoya,ZHANG Lei   

  1. Maths and Information Technology School,Yuncheng University,Yuncheng 044000,China
  • Received:2021-01-18 Online:2022-01-15 Published:2022-02-24
  • Supported by:
    Science and Technology Innovation Project of Colleges and Universities in Shanxi(2019L0855);Scientific Research Project of Yuncheng University(CY-2019035)

摘要:

针对传统CNN在有遮挡人脸识别中计算量大的问题,文中以L1-2DPCA为基础,提出了一种用于人脸识别的新型PCANet深度学习网络。该网络以L1-2DPCA学习多个卷积层的滤波器,在卷积层之后,通过二进制散列和逐块直方图进行池化。文中以CNN、PCANet、2DPCANet和L1-PCANet作为比较,在AR和RMFD人脸数据集上测试了文中所提出的网络。结果表明,在所有测试中,文中提出的深度学习网络的识别性能优于其他网络。由于采用L1范数,文中所提出的深度学习网络对异常值和训练图像的变化具有较强的鲁棒性。

关键词: 人脸识别, 遮挡, 深度学习, L1-2DPCA, 二维主成分分析, L1范数, 卷积神经网络, 鲁棒性

Abstract:

In view of the large amount of calculation in traditional CNN in occluded face recognition, this study proposes a new PCANet deep learning network for face recognition based on L1-2DPCA. The proposed network uses L1-2DPCA to learn filters of multiple convolutional layers. After the convolutional layer, pooling is performed through binary hashing and block-by-block histogram. CNN, PCANet, 2DPCANet and L1-PCANet are compared, and the proposed network is tested on AR and RMFD face data sets. The results show that in all tests, the recognition performance of the deep learning network proposed in this study is better than other networks. Due to the use of L1 norm, the proposed deep learning network has strong robustness to the changes of outliers and training images.

Key words: face recognition, occlusion, deep learning, L1-2DPCA, two-dimensional principal component analysis, L1 norm, CNN, robustness

中图分类号: 

  • TN432