[1] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683
pmid: 27244717
|
[2] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 15(56):3431-3440.
|
[3] |
Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolution encoder-decoder architecture for scene segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
|
[4] |
Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]. Munich: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015.
|
[5] |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[6] |
Peng C, Zhang X, Yu G, et al. Large kernal matters--improve semantic segmentation by global convolutional network[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[7] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(1):1097-1105.
|
[8] |
LécCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
doi: 10.1109/5.726791
|
[9] |
Zhang Z, Zhang X, Peng C, et al. Exfuse:Enhancing feature fusion for semantic segmentation[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018.
|
[10] |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(2):318-327.
doi: 10.1109/TPAMI.2018.2858826
|
[11] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6):533-536.
doi: 10.1038/323533a0
|
[12] |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1):1929-1958.
|
[13] |
Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018.
|
[14] |
董波, 周燕, 王永雄. 基于渐进结构感受野和全局注意力的显著性检测[J]. 电子科技, 2021, 34(1):23-30.
|
|
Dong Bo, Zhou Yan, Wang Yongxiong. Saliency detection by progressive structural receptive field and global attention[J]. Electronic Science and Technology, 2021, 34(1):23-30.
|
[15] |
Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
|
[16] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[J]. Pattern Analysis and Machine Intelligence, 2019, 42(8):2011-2023.
doi: 10.1109/TPAMI.2019.2913372
|
[17] |
鲜开义, 杨利萍, 周仁彬, 等. 变电站巡检机器人道路语义分割方法及其应用[J]. 科学技术与工程, 2020, 20(15):6151-6157.
|
|
Xian Kaiyi, Yang Liping, Zhou Renbin, et al. Road semantic segmentation method for substation inspection robot and it’s application[J]. Science Technology and Engineering, 2020, 20(15):6151-6157.
|
[18] |
罗嗣卿, 张志超, 岳琪. 基于改进SEGNET模型的图像语义分割[J]. 计算机工程, 2020, 47(4):256-261.
|
|
Luo Siqing, Zhang Zhichao, Yue Qi. Semantic segmentation of image based on improved SEGNET model[J]. Computer Engineering, 2020, 47(4):256-261.
|
[19] |
宋辉. 基于深度学习多路径特征融合的图像语义分割[D]. 北京: 北京邮电大学, 2019.
|
|
Song Hui. Multi-path feature fusion network based on deep learning for semantic image segmentation[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
|
[20] |
曹峰梅, 田海杰, 付君, 等. 结合特征图切分的图像语义分割[J]. 中国图象图形学报, 2019, 24(3):464-473.
|
|
Cao Fengmei, Tian Haijie, Fu Jun, et al. Feature map slice for semantic segmentation[J]. Journal of Image and Graphics, 2019, 24(3):464-473.
|