电子科技 ›› 2023, Vol. 36 ›› Issue (3): 76-80.doi: 10.16180/j.cnki.issn1007-7820.2023.03.012
应杰耀1,2
收稿日期:
2021-10-11
出版日期:
2023-03-15
发布日期:
2023-03-16
作者简介:
应杰耀(1986-),男,工程师。研究方向:网络安全、电力电网网络安全。
基金资助:
YING Jieyao1,2
Received:
2021-10-11
Online:
2023-03-15
Published:
2023-03-16
Supported by:
摘要:
为了保护智能电网设备中的核心数据与用户的个人隐私,分布式计算和同态加密等多项物联网安全技术逐渐受到了关注。近年来,物联网技术的发展推动了电网智能化的快速普及,而智能电网的应用又促进了物联网技术的更新。文中通过介绍智能电网所面临的多种攻击方法,回顾、梳理了智能电网数据安全问题的研究背景和现状。在此基础上,探讨与分析了虚假数据注入攻击及个人隐私保护问题的定义,展望了智能电网数据安全技术未来的研究方向和思路。
中图分类号:
应杰耀. 基于物联网技术的智能电网数据安全问题研究进展[J]. 电子科技, 2023, 36(3): 76-80.
YING Jieyao. Research Progress of Smart Grid Data Security Based on Internet of Things Technology[J]. Electronic Science and Technology, 2023, 36(3): 76-80.
[1] | Farhangi H. The path of the smart grid[J]. IEEE Powerand Energy Magazine, 2009, 8(1):18-28. |
[2] |
Gungor V C, Sahin D, Kocak T, et al. Smart grid technologies:Communication technologies and standards[J]. IEEE Transactions on Industrial Informatics, 2011, 7(4):529-539.
doi: 10.1109/TII.2011.2166794 |
[3] | Fang X, Misra S, Xue G, et al. Smart grid-the new and improved power grid:A survey[J]. IEEE Communications Surveys & Tutorials, 2012, 14(4):944-980. |
[4] | Fruhauf K, Reichart K, Saly S, et al. The application of a database system to online security assessment in an EHV-network[C]. Cleveland: IEEE Conference Proceedings Power Industry Computer Applications Conference,1979. |
[5] |
Moslehi K, Kumar R. A reliability perspective of the smart grid[J]. IEEE Transactions on Smart Grid, 2010, 1(1):57-64.
doi: 10.1109/TSG.2010.2046346 |
[6] |
Metke A R, Ekl R L. Security technology for smart grid networks[J]. IEEE Transactions on Smart Grid, 2010, 1(1):99-107.
doi: 10.1109/TSG.2010.2046347 |
[7] | Liu Y, Ning P, Reiter M K. False data injection attacks against state estimation in electric power grids[J]. ACM Transactions on Information and System Security, 2011, 14(1):1-33. |
[8] |
Liu X, Li Z Y, Liu X D, et al. Masking transmission line outages via false data injection attacks[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(7):1592-1602.
doi: 10.1109/TIFS.2016.2542061 |
[9] |
Le X, Mo Y, Sinopoli B. Integrity data attacks in powermarket operations[J]. IEEE Transactions on Smart Grid, 2011, 2(4):659-666.
doi: 10.1109/TSG.2011.2161892 |
[10] | Tan R, Nguyen H H, Foo E Y S, et al. Modeling and mitigating impact of false data injection attacks on automatic generation control[J]. IEEE Transactions on Information Forensics & Security, 2017, 12(7):1609-1624. |
[11] |
Sridhar S, Govindarasu M. Model-based attack detection and mitigation for automatic generation control[J]. IEEE Transactions on Smart Grid, 2014, 5(2):580-591.
doi: 10.1109/TSG.2014.2298195 |
[12] |
Liu S, Mashayekh S, Kundur D, et al. A framework for modeling cyber-physical switching attacks in smart grid[J]. IEEE Transactions on Emerging Topics in Computing, 2013, 1(2):273-285.
doi: 10.1109/TETC.6245516 |
[13] | Zhao Y, Goldsmith A, Poor H V. Fundamental limits of cyber-physical security in smart power grids[C]. Firenze: Proceedings of the Fifty-second IEEE Conference on Decision and Control, 2013. |
[14] | Min B, Varadharajan V. Design and analysis of securityattacks against critical smart grid infrastructures[C]. Tianjin:Proceedings of the Nineteenth International Conference on Engineering of Complex Computer Systems, 2014. |
[15] |
Bi S, Zhang Y J. Graphical methods for defense against false-data injection attacks on power system state estimation[J]. IEEE Transactions on Smart Grid, 2014, 5(3):1216-1227.
doi: 10.1109/TSG.5165411 |
[16] |
Liang J, Sankar L, Kosut O. Vulnerability analysis and consequences of false data injection attack on power system state estimation[J]. IEEE Transactions on Power Systems, 2016, 31(5):3864-3872.
doi: 10.1109/TPWRS.2015.2504950 |
[17] |
Giani A, Bitar E, Garcia M, et al. Smart grid data integrity attacks[J]. IEEE Transactions on Smart Grid, 2013, 4(3):1244-1253.
doi: 10.1109/TSG.2013.2245155 |
[18] |
Liu X, Bao Z, Lu D, et al. Modeling of local false data injection attacks with reduced network information[J]. IEEE Transactions on Smart Grid, 2015, 6(4):1686-1696.
doi: 10.1109/TSG.2015.2394358 |
[19] |
Hug G, Giampapa J A. Vulnerability assessment of ACstate estimation with respect to false data injection cyber-attacks[J]. IEEE Transactions on Smart Grid, 2012, 3(3):1362-1370.
doi: 10.1109/TSG.2012.2195338 |
[20] |
Yu Z H, Chin W L. Blind false data injection attack using PCA approximation method in smart grid[J]. IEEE Transactions on Smart Grid, 2015, 6(3):1219-1226.
doi: 10.1109/TSG.2014.2382714 |
[21] |
Kim J, Tong L. On topology attack of a smart grid:Undetectable attacks and countermeasures[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(7):1294-1305.
doi: 10.1109/JSAC.2013.130712 |
[22] |
Li Z, Shahidehpour M, Alabdulwahab A, et al. Bilevel model for analyzing coordinated cyber-physical attacks on power systems[J]. IEEE Transactions on Smart Grid, 2015, 7(5):2260-2272.
doi: 10.1109/TSG.2015.2456107 |
[23] | Kang J W, Joo I Y, Choi D H. False data injection attacks on contingency analysis:Attack strategies and impact assessment[J]. IEEE Access, 2018(6):8841-8851. |
[24] |
Chaojun G, Jirutitijaroen P, Motani M. Detecting false data injection attacks in AC state estimation[J]. IEEE Transactions on Smart Grid, 2015, 6(5):2476-2483.
doi: 10.1109/TSG.2015.2388545 |
[25] | 杨杉, 谭博, 郭静波. 基于双马尔科夫链的新型能源互联网虚假数据注入攻击检测[J]. 电力自动化设备, 2021, 41(2):131-137. |
Yang Shan, Tan Bo, Guo Jingbo. Detection of false data injection attack for new-type energy internet based on double Markov chains[J]. Electric Power Automation Equipment, 2021, 41(2):131-137. | |
[26] |
Liu X, Zhu P, Zhang Y, et al. A collaborative intrusion detection mechanism against false data injection attack in advanced metering infrastructure[J]. IEEE Transactions on Smart Grid, 2015, 6(5):2435-2443.
doi: 10.1109/TSG.2015.2418280 |
[27] |
Sedghi H, Jonckheere E. Statistical structure learning toensure data integrity in smart grid[J]. IEEE Transactions on Smart Grid, 2015, 6(4):1924-1933.
doi: 10.1109/TSG.2015.2403329 |
[28] |
Wang X, Luo X, Zhang Y, et al. Detection and isolation of false data injection attacks in smart grids via non-linear interval observer[J]. IEEE Internet of Things Journal, 2019, 6(4):6498-6512.
doi: 10.1109/JIoT.6488907 |
[29] |
Li B, Ding T, Huang C, et al. Detecting false data injection attacks against power system state estimation with fast go-decomposition approach[J]. IEEE Transactions on Industrial Informatics, 2018, 15(5):2892-2904.
doi: 10.1109/TII.9424 |
[30] |
Manandhar K, Cao X, Hu F, et al. Detection of faults and attacks including false data injection attack in smart grid using Kalman filter[J]. IEEE Transactions on Control of Network Systems, 2014, 1(4):370-379.
doi: 10.1109/TCNS.2014.2357531 |
[31] |
Liu X, Li Z, Li Z. Optimal protection strategy against false data injection attacks in power systems[J]. IEEE Transactions on Smart Grid, 2016, 8(4):1802-1810.
doi: 10.1109/TSG.2015.2508449 |
[32] | An Y, Liu D. Multivariate gaussian based false data detection against cyber-attacks[J]. IEEE Access, 2019(7):119804-119812. |
[33] |
Xue D, Jing X, Liu H. Detection of false data injection attacks in smart grid utilizing ELM-based OCON framework[J]. IEEE Access, 2019, 7(31):31762-31773.
doi: 10.1109/ACCESS.2019.2902910 |
[34] | Yang Q, An D, Min R, et al. On optimal PMU placement-based defense against data integrity attacks in smart grid[J]. IEEE Transactions on Information Forensics and Securtiy, 2017, 12(7):1735-1750. |
[35] |
Vuković O, Dán G. Security of fully distributed power system state estimation:Detection and mitigation of data integrity attacks[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(7):1500-1508.
doi: 10.1109/JSAC.2014.2332106 |
[36] |
Liu Y, Guo W, Fan C I, et al. A practical privacy-preser-ving data aggregation (3PDA) scheme for smart grid[J]. IEEE Transactions on Industrial Informatics, 2018, 15(3):1767-1774.
doi: 10.1109/TII.2018.2809672 |
[37] |
Ding Y, Wang B, Wang Y, et al. Secure metering data a-ggregation with batch verification in industrial smart grid[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10):6607-6616.
doi: 10.1109/TII.9424 |
[38] |
Zhao S, Li F, Li H, et al. Smart and practical privacy-preserving data aggregation for fog-based smart grids[J]. IEEE Transactions on Information Forensics and Security, 2020, 16(3):521-536.
doi: 10.1109/TIFS.2020.3014487 |
[39] | 魏文燕. Paillier同态密码在隐私保护中的应用研究[D]. 焦作: 河南理工大学, 2017. |
Wei Wenyan. Research on the application of Paillier homomorphic encryption in privacy protection[D]. Jiaozuo: Henan Polytechnic University, 2017. | |
[40] |
Chim T W, Yiu S M, Li V O K, et al. PRGA:privacy-preserving recording & gateway-assisted authentication of power usage information for smart grid[J]. IEEE Transactions on Dependable and Secure Computing, 2015, 12(1):85-97.
doi: 10.1109/TDSC.2014.2313861 |
[41] |
Abdallah A, Shen X S. A lightweight lattice-based homomorphic privacy-preserving data aggregation scheme for smart grid[J]. IEEE Transactions on Smart Grid, 2016, 9(1):396-405.
doi: 10.1109/TSG.2016.2553647 |
[42] |
Gope P, Sikdar B. An efficient data aggregation scheme for privacy-friendly dynamic pricing-based billing and demand-response management in smart grids[J]. IEEE Internet of Things Journal, 2018, 5(4):3126-3135.
doi: 10.1109/JIOT.2018.2833863 |
[43] |
Jia W, Zhu H, Cao Z, et al. Human-factor-aware privacy-preserving aggregation in smart grid[J]. IEEE Systems Journal, 2013, 8(2):598-607.
doi: 10.1109/JSYST.2013.2260937 |
[44] |
Lyu L, Nandakumar K, Rubinstein B, et al. PPFA:privacy preserving fog-enabled aggregation in smart grid[J]. IEEE Transactions on Industrial Informatics, 2018, 14(8):3733-3744.
doi: 10.1109/TII.9424 |
[45] |
Bao H, Lu R. A new differentially private data aggregation with fault tolerance for smart grid communications[J]. IEEE Internet of Things Journal, 2015, 2(3):248-258.
doi: 10.1109/JIOT.2015.2412552 |
[46] | Boneh D, Goh E J, Nissim K. Evaluating 2-DNF formulas on ciphertexts[C]. Cambridge: Proceedings of the Theory of Cryptograph Conference, 2005. |
[47] | Gong X, Hua Q S, Qian L, et al. Communication-efficient and privacy-preserving data aggregation without trusted authority[C]. Honolulu: IEEE INFOCOM Conference on Computer Communications, 2018. |
[48] |
Boudia O RM, Senouci S M, Feham M. Elliptic curve-based secure multidimensional aggregation for smart grid communications[J]. IEEE Sensors Journal, 2017, 17(23):7750-7757.
doi: 10.1109/JSEN.2017.2720458 |
[49] |
Zuo X, Li L, Peng H, et al. Privacy-preserving multidimensional data aggregation scheme without trusted authority in smart grid[J]. IEEE Systems Journal, 2020, 15(1):395-406.
doi: 10.1109/JSYST.2020.2994363 |
[50] | Ming Y, Zhang X, Shen X. Efficient privacy-preserving multi-dimensional data aggregation scheme in smart grid[J]. IEEE Access, 2019(7):32907-32921. |
[1] | 卢东祥. 道路交通网络节点分配优化策略研究进展[J]. 电子科技, 2023, 36(3): 81-86. |
[2] | 杜鹏,包晓安,胡逸飞,陈迪荣. 基于卡尔曼滤波的无线传感网时空数据融合算法[J]. 电子科技, 2022, 35(6): 21-27. |
[3] | 施震华,张娜,包晓安,宋杰. 基于分批估计的自适应加权数据融合算法[J]. 电子科技, 2022, 35(5): 19-25. |
[4] | 程顺达,程颖,孙士江. 基于机器学习的肿瘤智能辅助诊断方法[J]. 电子科技, 2022, 35(5): 56-59. |
[5] | 李娜,高博,谢宗甫. 分层异构信号处理平台调度方法研究[J]. 电子科技, 2022, 35(2): 7-13. |
[6] | 方凯,史志才,贾媛媛. 基于混合聚类的k-匿名数据发布算法[J]. 电子科技, 2022, 35(12): 78-83. |
[7] | 张晔,鲍亮. 基于机器学习的服务组合技术研究进展[J]. 电子科技, 2022, 35(11): 58-63. |
[8] | 林静,胡德敏,王揆豪. 差分隐私模糊聚类位置保护方法[J]. 电子科技, 2022, 35(11): 64-71. |
[9] | 王鸽,惠维,丁菡,赵鲲,赵季中. 一种基于无源射频技术的用户步态识别及认证方法[J]. 电子科技, 2020, 33(6): 1-7. |
[10] | 孙海静,陈强,杨娇,周玲. 基于混合编码的射频识别无芯片标签设计[J]. 电子科技, 2020, 33(6): 8-12. |
[11] | 朱亮,周勇,陈佳,吴晔阳,张靖. 基于GIS技术的变电站智能运检管理系统[J]. 电子科技, 2020, 33(2): 71-74. |
[12] | 楼顺天,庞斯琪,李明昱. 基于物联网的单片机创新实验系统设计[J]. 电子科技, 2020, 33(11): 1-6. |
[13] | 李超,郭瑜. 基于SK等指标和SVM的滚动轴承性能退化评估研究[J]. 电子科技, 2020, 33(1): 6-12. |
[14] | 刘琛,马驷俊,倪雪莉. 基于属性的物联网感知层访问控制方案[J]. 电子科技, 2019, 32(9): 55-59. |
[15] | 蓝机满. 基于云计算的数据挖掘系统设计[J]. 电子科技, 2019, 32(8): 70-74. |
|