电子科技 ›› 2023, Vol. 36 ›› Issue (3): 81-86.doi: 10.16180/j.cnki.issn1007-7820.2023.03.013
• • 上一篇
卢东祥
收稿日期:
2022-01-30
出版日期:
2023-03-15
发布日期:
2023-03-16
作者简介:
卢东祥(1979-),男,副教授。研究方向:计算机应用技术、科技成果转化。
基金资助:
LU Dongxiang
Received:
2022-01-30
Online:
2023-03-15
Published:
2023-03-16
Supported by:
摘要:
为了进一步提高城市道路交通网络的通行效率,粒子群优化和神经网络等多种智能优化算法受到越来越多的关注。近年来,深度学习技术的普及与应用大幅提升了城市交通网络的节点识别效率,而交通网络的节点调度又扩展了深度学习技术的应用。文中详细分析了交通节点调度所面临的关键问题,归纳并总结了相关网络节点分配的研究现状。在此基础上,深入研讨了城市交通网络节点调度与深度学习的应用前景,并对交通网络节点分配优化策略的未来研究方向进行了展望。
中图分类号:
卢东祥. 道路交通网络节点分配优化策略研究进展[J]. 电子科技, 2023, 36(3): 81-86.
LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network[J]. Electronic Science and Technology, 2023, 36(3): 81-86.
[1] | Hooper C J. The need for further research on traffic assignment[J]. Highway Research Board Bulletin, 1952, 61(1):66-70. |
[2] | Brown R M, Weaver H H. Traffic assignment using IBM computations and summation[J]. Highway Research Board Bulletin, 1956, 130(1):47-58. |
[3] | Morgan H L. UTS-I:A macro system for traffic network simulation[C]. Chicago: Proceedings of the Spring Joint Computer Conference,1970. |
[4] | Williams J C, Mahmassani H S, Herman R. Urban traffic network flow models[J]. Transportation Research Record, 1987, 1(1):78-88. |
[5] | Jayakrishnan R, Mahmassani H S. Dynamic simulation assignment methodology to evaluate in-vehicle information strategies in urban traffic networks[C]. Boston: Winter Simulation Conference Proceeding,1990. |
[6] | Rouvellou I, Hart G W. Topology identification for traffic and configuration management in dynamic networks[C]. Berlin:IEEE Infocom the Eleventh Joint Conference of the Computer & Communications Societies,1992. |
[7] |
Gegov A E. Hierarchical dispatching control of urban traffic systems[J]. European Journal of Operational Research, 1993, 71(2):235-246.
doi: 10.1016/0377-2217(93)90051-N |
[8] |
Feng L, Zhou C, Wan Q. An optimum vehicular path algorithm for traffic network based on hierarchical spatial reasoning[J]. Geo-Spatial Information Science, 2000, 3(4):36-42.
doi: 10.1007/BF02829394 |
[9] |
Patel M, Ranganathan N. IDUTC:An intelligent decision making system for urban traffic-control applications[J]. IEEE Transactions on Vehicular Technology, 2001, 50(3):816-829.
doi: 10.1109/25.933315 |
[10] |
Franke U, Heinrich S. Fast obstacle detection for urbantraffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(3):173-181.
doi: 10.1109/TITS.2002.802934 |
[11] | Fuerstenberg K C, Dietmayer K, Willhoeft V. Pedestrian recognition in urban traffic using a vehicle based multilayer laserscanner[C]. Los Angeles: IEEE Intelligent Vehicle Symposium, 2002. |
[12] | Berg M, Hegyi A, Schutter B D, et al. A macroscopic traffic flow model for integrated control of freeway and urban traffic networks[C]. San Diego: IEEE Conference on Decision and Control, 2003. |
[13] | Meneses A, Osório I. Urban traffic flow prediction by using GPS and neural networks theory[C]. San Diego: Proceedings of the National Technical Meeting of theInstitute of Navigation, 2004. |
[14] | Montis A D, Barthélemy M, Chessa A, et al. The structure of Inter-Urban traffic:A weighted network analysis[J]. Environment & Planning B:Planning & Design, 2005, 34(5):905-924. |
[15] |
Kosmatopoulos E B, Papageorgiou M, Vakouli A, et al. Adaptive fine-tuning of nonlinear control systems with application to the urban traffic control strategy TUC[J]. IEEE Transactions on Control Systems Technology, 2007, 15(6):991-1002.
doi: 10.1109/TCST.2007.899645 |
[16] | Chen R S, Chen D K, Lin S Y. ACTAM:Cooperative multi-agent system architecture for urban traffic signal control[J]. IEICE Transactions on Information & Systems, 2005, 88(1):119-126. |
[17] | Long J C, Gao Z Y, REN H L, et al. Urban traffic congestion propagation and bottleneck identification[J]. Science in China(Series F:Information Sciences), 2008, 1(7):948-964. |
[18] | 胡一竑, 吴勤旻, 朱道立. 城市道路网络的拓扑性质和脆弱性分析[J]. 复杂系统与复杂性科学, 2009(3):69-76. |
Hu Yihong, Wu Qinmin, Zhu Daoli. Topological properties and vulnerability analysis of spatial urban street networks[J]. Complex Systems and Complexity Science, 2009(3):69-76. | |
[19] | Li W, Pan S, Zhang Y, et al. Urban traffic complex network hub node analysis and signal control optimization strategy research[C]. Dalian: Proceedings of Chinese Control and Decision Conference, 2010. |
[20] |
Lin S, Schutter B D, Xi Y G, et al. Efficient network wide model-based predictive control for urban traffic networks[J]. Transportation Research Part C:Emerging Technologies, 2012, 24(9):122-140.
doi: 10.1016/j.trc.2012.02.003 |
[21] |
Lin S, Schutter B D, Xi Y, et al. Integrated urban traffic control for the reduction of travel delays and emissions[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4):1609-1619.
doi: 10.1109/TITS.2013.2263843 |
[22] |
Olmo P D, Ricciardi N, Sgalambro A. A multiperiod maximal covering location model for the optimal location of intersection safety cameras on an urban trafficnetwork[J]. Procedia-Social and Behavioral Sciences, 2014, 108(1):106-117.
doi: 10.1016/j.sbspro.2013.12.824 |
[23] | Moretti F, Panzieri S, et al. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling[J]. Neurocomputing, 2015, 36(7):321-329. |
[24] | 丁恒, 郭放, 郑小燕, 等. 基于时空检测的城市交通网络瓶颈识别方法研究[J]. 合肥工业大学学报(自然科学版), 2016, 39(7):868-874. |
Ding Heng, Guo Fang, Zheng Xiaoyan, et al. Urban traffic network bottleneck identification based on temporaland spatial detection[J]. Journal of Hefei University of Technology(Natural Science), 2016, 39(7):868-874. | |
[25] | 苏飞, 董宏辉, 贾利民, 等. 基于时空相关性的城市交通路网关键路段识别[J]. 交通运输系统工程与信息, 2017, 17(3):213-221. |
Su Fei, Dong Honghui, Jia Limin, et al. Identification of critical section in urban traffic road network based on space-time correlation[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3):213-221. | |
[26] | 冯慧芳, 柏凤山, 徐有基. 基于轨迹大数据的城市交通感知和路网关键节点识别[J]. 交通运输系统工程与信息, 2018, 18(3):42-47,54. |
Feng Huifang, Bai Fengshan, Xu Youji. Urban traffic perception and critical node identification of road network based on trajectory big data[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3):42-47,54. | |
[27] |
Fan Z, Liu C, Cai D, et al. Research on black spot identification of safety in urban traffic accidents based onmachine learning method[J]. Safety Science, 2019, 118(2):607-616.
doi: 10.1016/j.ssci.2019.05.039 |
[28] |
Holmgren J, Knapen L, Olsson V, et al. On the use of clustering analysis for identification of unsafe places in an urban traffic network[J]. Procedia Computer Science, 2020, 170(1):187-194.
doi: 10.1016/j.procs.2020.03.024 |
[29] | Yu H Y, Fang J, Liu S, et al. A node optimization model based on the spatiotemporal characteristics of the road network for urban traffic mobile crowd sensing[J]. Vehicular Communications, 2021, 31(1):1-12. |
[30] | Lu B, Gan X Y, Jin H M, et al. Make more connections:Urban traffic flow forecasting with spatiotemporal adaptive gated graph convolution network[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(2):1-25. |
[31] | Teo K, Kow W Y, Chin Y K. Optimization of traffic flow within an urban traffic light intersection with genetic algorithm[C]. Bangkok: the Second International Conference on Computational Intelligence, 2010. |
[32] |
Ramazani H, Shafahi Y, Seyedabrishami S E. A fuzzy traffic assignment algorithm based on driver perceivedtravel time of network links[J]. Scientia Iranica, 2011, 18(2):190-197.
doi: 10.1016/j.scient.2011.03.028 |
[33] | Wei H, Viti F, Tampere C. An iterative learning approach for signal control in urban traffic networks[C]. Dallas: International IEEE Conference on Intelligent Transportation Systems, 2013. |
[34] |
Dezani H, Bassi R, Marranghello N, et al. Optimizing urban traffic flow using genetic algorithm with petri net analysis as fitness function[J]. Neurocomputing, 2014, 124(2):162-167.
doi: 10.1016/j.neucom.2013.07.015 |
[35] |
Gentile G. Using the general link transmission model in a dynamic traffic assignment to simulate congestion on urban networks[J]. Transportation Research Procedia, 2015, 5(1):66-81.
doi: 10.1016/j.trpro.2015.01.011 |
[36] |
Hu W B, Wang H. A swarm intelligent method for traffic light scheduling: application to real urban traffic networks[J]. Applied Intelligence, 2016, 44(1):208-231.
doi: 10.1007/s10489-015-0701-y |
[37] | Ahn G H, Ki Y K, Kim E J. Real-time estimation of travel speed using urban traffic information system and filtering algorithm[C]. Taipei: International Conference on Systems, 2017. |
[38] | 蒋阳升, 王逸, 赵斌, 等. 基于单向交通组织的城市交通微循环网络优化设计[J]. 综合运输, 2019, 41(1):65-70,126. |
Jiang Yangsheng, Wang Yi, Zhao Bin, et al. Optimizationdesign of urban traffic microcirculation network basedon one-way traffic organization[J]. China Transportation Review, 2019, 41(1):65-70,126. | |
[39] | Yu K, Wang Y, Zhao W. Safety evaluation system of urban traffic network based on topological genetic algorithm[J]. Journal of Intelligent and Fuzzy Systems, 2020, 38(3):1-8. |
[40] | Wu Z, Huang M X, Zhao A, et al. Urban traffic planning and traffic flow prediction based on Ulchis gravity model and Dijkstra algorithm[J]. Journal of Physics: Conference Series, 2021, 1972(1):1-11. |
[1] | 应杰耀. 基于物联网技术的智能电网数据安全问题研究进展[J]. 电子科技, 2023, 36(3): 76-80. |
[2] | 左斌,李菲菲. 基于注意力机制和Inf-Net的新冠肺炎图像分割方法[J]. 电子科技, 2023, 36(2): 22-28. |
[3] | 赵文君,翟晗,张洪艳. 全变差稀疏约束深度非负矩阵分解高光谱遥感影像解混方法[J]. 电子科技, 2023, 36(2): 53-60. |
[4] | 余琼芳,牛冬阳. 基于LSTM网络的矿山压力时空混合预测[J]. 电子科技, 2023, 36(2): 67-72. |
[5] | 邬彤,于莲芝. 融入注意力网络的深度分解机推荐算法[J]. 电子科技, 2023, 36(1): 38-43. |
[6] | 周启平,何伟,贾蕾,郭俊凯,赵建国. 基于北斗和边缘计算的车联网导航技术研究[J]. 电子科技, 2023, 36(1): 51-59. |
[7] | 毕嘉桢,沈拓,张轩雄. 基于机器视觉的轨道交通自动测距研究[J]. 电子科技, 2022, 35(9): 37-43. |
[8] | 张乔木,钟倩文,孙明,罗文成,柴晓冬. 复杂环境下弓网接触位置动态监测方法研究[J]. 电子科技, 2022, 35(8): 66-72. |
[9] | 赵轩,周凡,余汉成. 基于改进特征提取及融合模块的YOLOv3模型[J]. 电子科技, 2022, 35(7): 40-45. |
[10] | 程顺达,程颖,孙士江. 基于机器学习的肿瘤智能辅助诊断方法[J]. 电子科技, 2022, 35(5): 56-59. |
[11] | 陈鹏,刘子龙. 基于GAN-CNN的心律失常识别[J]. 电子科技, 2022, 35(3): 45-50. |
[12] | 李娜,高博,谢宗甫. 分层异构信号处理平台调度方法研究[J]. 电子科技, 2022, 35(2): 7-13. |
[13] | 于润润,姜晓燕,朱凯赢,蒋光好. 基于上下文注意力机制的实时语义分割[J]. 电子科技, 2022, 35(12): 57-63. |
[14] | 邓磊,孙培洋. 基于深度学习的网络舆情监测系统研究[J]. 电子科技, 2022, 35(12): 97-102. |
[15] | 张晔,鲍亮. 基于机器学习的服务组合技术研究进展[J]. 电子科技, 2022, 35(11): 58-63. |
|