[1] |
罗浩, 霍明夷, 尹珅, 等. 复杂工业系统故障诊断与安全控制方法[J]. 信息与控制, 2021, 50(1):20-33.
doi: 10.13976/j.cnki.xk.2021.0426
|
|
Luo Hao, Huo Mingyi, Yin Shen, et al. Fault diagnosis and safety control for complex industrial systems[J]. Informational and Control, 2021, 50(1):20-33.
doi: 10.13976/j.cnki.xk.2021.0426
|
[2] |
Yin S, Ding S X, Xie X C, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6418-6428.
doi: 10.1109/TIE.2014.2301773
|
[3] |
李元, 耿泽伟. 基于LLE与K均值聚类算法的工业过程故障诊断[J]. 系统仿真学报, 2021, 33(9):2066-2073.
doi: 10.16182/j.issn1004731x.joss.20-0362
|
|
Li Yuan, Geng Zewei. Fault diagnosis of industrial process based on LLE and K-means clustering algorithm[J]. Journal of System Simulation, 2021, 33(9):2066-2073.
doi: 10.16182/j.issn1004731x.joss.20-0362
|
[4] |
Aljemely A H, Xuan J P, Jawad F K J. et al. A novel unsupervised learning method for intelligent fault diagnosis of rolling element bearings based on deep functional auto-encoder[J]. Journal of Mechanical Science and Technology, 2020, 34(11):4367-4381
doi: 10.1007/s12206-020-1002-x
|
[5] |
Sun M, Wang H, Liu P, et al. Stack autoencoder transfer learning algorithm for bearing fault diagnosis based on class separation and domain fusion[J]. IEEE Transactions on Industrial Electronics, 2021, 69(3):3047-3058.
doi: 10.1109/TIE.2021.3066933
|
[6] |
Li J P, Huang R Y, He G L, et al. A deep adversarial transfer learning network for machinery emerging fault detection[J]. IEEE Sensors Journal, 2020, 20(15):8413-8422.
doi: 10.1109/JSEN.7361
|
[7] |
Yin Z, Zhao M Y, Zhang W, et at. Physiological-signal-based mental workload estimation via transfer dynamical autoencoders in a deep learning framework[J]. Neurocomputing, 2019, 347(1): 212-229.
doi: 10.1016/j.neucom.2019.02.061
|
[8] |
Kaur S, Aggarwal H, Rani R. Diagnosis of Parkinson’s disease using deep CNN with transfer learning and data augmentation[J]. Multimedia Tools and Applications, 2021, 80(7):10113-10139.
doi: 10.1007/s11042-020-10114-1
|
[9] |
Levent E, Turker I, Serkan K. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier[J]. Journal of Signal Processing Systems, 2019, 91(2):179-189.
doi: 10.1007/s11265-018-1378-3
|
[10] |
刘建伟, 赵会丹, 罗雄麟, 等. 深度学习批归一化及其相关算法研究进展[J]. 自动化学报, 2020, 46(6):1090-1120.
|
|
Liu Jianwei, Zhao Huidan, Luo Xionglin, et al. Research progress on batch normalization of deep learning and its related algorithms[J]. Acta Automatica Sinica, 2020, 46(6):1090-1120.
|
[11] |
庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1):26-39.
|
|
Zhuang Fuzhen, Luo Ping, He Qing, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1):26-39.
|
[12] |
闫书豪, 乔美英. 基于一维WConv-BiLSTM的轴承故障诊断算法[J]. 电子科技, 2021, 34(4):75-82.
|
|
Yan Shuhao, Qiao Meiying. Bearing fault diagnosis algorithm based on one-dimensional WCov-BiLSTM[J]. Electronic Science and Technology, 2021, 34(4):75-82.
|
[13] |
王志杰. 基于K-L散度的滚动轴承故障诊断及状态监测方法研究[D]. 北京: 北京交通大学, 2019:20-61.
|
|
Wang Zhijie. Fault diagnosis and condition monitoring of rolling bearing based on Kullback-Leibler divergence[D]. Beijing: Beijing Jiaotong University, 2019:20-61.
|
[14] |
Weiss K, Khoshgoftaar T M, Wang Dingding. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1):1-40.
doi: 10.1186/s40537-015-0036-x
|
[15] |
Pan S J, Yang Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10):1345-1359.
doi: 10.1109/TKDE.2009.191
|
[16] |
Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
doi: 10.1016/0098-1354(93)80018-I
|
[17] |
Chen H H, Tiňo P, Yao X. Cognitive fault diagnosis in tennessee eastman process using learning in the model space[J]. Computers & Chemical Engineering, 2014, 67(3):33-42.
doi: 10.1016/j.compchemeng.2014.03.015
|