电子科技 ›› 2024, Vol. 37 ›› Issue (2): 6-13.doi: 10.16180/j.cnki.issn1007-7820.2024.02.002
满延露,刘敏,王锴
收稿日期:
2022-09-23
出版日期:
2024-02-15
发布日期:
2024-01-18
作者简介:
满延露(1997-),女,硕士研究生。研究方向:配电网状态估计。|刘敏(1979-),女,博士,教授。研究方向:电力市场风险评估、配电网需求响应。|王锴(1995-),男,硕士研究生。研究方向:配电网状态估计。
基金资助:
MAN Yanlu,LIU Min,WANG Kai
Received:
2022-09-23
Online:
2024-02-15
Published:
2024-01-18
Supported by:
摘要:
随着分布式电源以及多元化负荷大规模接入,传统无源配电网逐步转化为有源配电网,配电网的故障种类愈发多样化,工作环境、工作状况与拓扑结构日趋复杂。主动配电网更需通过精进、高效的态势感知技术提高系统运行决策的及时性和准确性,准确预测系统潜在风险。文中阐述了主动配电网中态势感知技术的意义与概念,构建了其基本构架,并对态势觉察、态势理解与态势预测的研究进程、研究难点和未来研究方向进行了详细梳理与总结。
中图分类号:
满延露,刘敏,王锴. 主动配电网态势感知技术研究综述与展望[J]. 电子科技, 2024, 37(2): 6-13.
MAN Yanlu,LIU Min,WANG Kai. A Review and Prospect of Research on Situational Awareness Technology in Active Distribution Network[J]. Electronic Science and Technology, 2024, 37(2): 6-13.
[1] | 王晓辉, 陈乃仕, 李烨, 等. 基于态势联动的主动配电网多源优化调度框架[J]. 电网技术, 2017, 41(2):349-354. |
Wang Xiaohui, Chen Naishi, Li Ye, et al. Multi-source optimal dispatch architecture for active distribution network based on situational linkage[J]. Power System Technology, 2017, 41(2):349-354. | |
[2] | 黄蔓云, 卫志农, 孙国强, 等. 基于历史数据挖掘的配电网态势感知方法[J]. 电网技术, 2017, 41(4):1139-1145. |
Huang Manyun, Wei Zhinong, Sun Guoqiang, et al. A novel situation awareness approach based on historical data-mining model in distribution networks[J]. Power System Technology, 2017, 41(4):1139-1145 | |
[3] | 李欣桐, 俞小勇, 阳国燕, 等. 基于微型PMU数据挖掘的智能配电网态势感知方法研究[J/OL].(2021-06-29) [2022-09-15]http://kns.cnki.net/kcms/detail/23.1202.TH.20210629.1233.004.html. |
Li Xintong, Yu Xiaoyong, Yang Guoyan, et al. Research on situation awareness method of smart distribution network based on micro PMU data mining[J/OL].(2021-06-29) [2022-09-15]http://kns.cnki.net/kcms/detail/23.1202.TH.20210629.1233.004.html. | |
[4] | 田书欣, 李昆鹏, 魏书荣, 等. 基于同步相量测量装置的配电网安全态势感知方法[J]. 中国电机工程学报, 2021, 41(2):617-632. |
Tian Shuxin, Li Kunpeng, Wei Shurong, et al. Security situation awareness approach for distribution network based on synchronous phasor measurement unit[J]. Proceedings of the CSEE, 2021, 41(2):617-632. | |
[5] | 刘鑫蕊, 李欣, 孙秋野, 等. 考虑冰灾环境的配电网态势感知和薄弱环节辨识方法[J]. 电网技术, 2019, 43(7):2243-2252. |
Liu Xinrui, Li Xin, Sun Qiuye, et al. A new method for situation awareness and weakness identification of distribution network considering ice disaster[J]. Power System Technology, 2019, 43(7):2243-2252. | |
[6] |
Lin J, Wan C, Song Y, et al. Situation awareness of active distribution network:Roadmap,technologies and bottlenecks[J]. CSEE Journal of Power and Energy Systems, 2016, 2(3):35-42.
doi: 10.17775/CSEEJPES |
[7] | Saunders C S, Liu G, Yu Y, et al. Data-driven distributed analytics and control platform for smart grid situation alawareness[J]. CSEE Journal of Power and Energy Systems, 2016, 2(3):51-58. |
[8] |
Ge L, Li Y. Smart distribution network situation awareness for high-quality operation and maintenance:A brief review[J]. Energies, 2022, 15(3):828-837.
doi: 10.3390/en15030828 |
[9] |
Andreoni R, Macii D, Brunelli M, et al. Tri-objective optimal PMU placement including accurate state estimation:The case of distribution systems[J]. IEEE Access, 2021, 9(4):62102-62117.
doi: 10.1109/ACCESS.2021.3074579 |
[10] |
Qi J, Sun K, Kang W. Optimal PMU placement for power system dynamic state estimation by using empirical observability gramian[J]. IEEE Transactions on Power Systems, 2014, 30(4):2041-2054.
doi: 10.1109/TPWRS.2014.2356797 |
[11] |
Zhao J, Ye Y, Yu H, et al. Improved SVD-based data compression method for synchronous phasor measurement in distribution networks[J]. International Journal of Electrical Power & Energy Systems, 2021, 129(2):106877-106885.
doi: 10.1016/j.ijepes.2021.106877 |
[12] |
Hu X, Zhang H, Ma D, et al. Situation awareness method using spectral analysis of random matrix for integrated energy system[J]. ISA Transactions, 2020, 99(240):240-251.
doi: 10.1016/j.isatra.2019.09.017 |
[13] | Nonomura T, Shibata H, Takaki R. Extended-Kalman-filter-based dynamic mode decomposition for simultaneous system identification and denoising[J]. PloS One, 2019, 14(2):836-845. |
[14] | 马骏宇, 严正, 徐潇源. 基于混合量测的配电网两阶段抗差动态状态估计方法[J]. 水电能源科学, 2020, 38(10): 176-180. |
Ma Junyu, Yan Zheng, Xu Xiaoyuan. Two stage robust dynamic state estimation of distribution network based on hybrid measurements[J]. Water Resources and Power, 2020, 38(10):176-180. | |
[15] |
Barocio E, Pal B C, Thornhill N F, et al. A dynamic mode decomposition framework for global power system oscillation analysis[J]. IEEE Transactions on Power Systems, 2014, 30(6):2902-2912.
doi: 10.1109/TPWRS.2014.2368078 |
[16] | 王泽, 张玉敏, 吉兴全, 等. 基于深度学习与内核岭回归的电力系统鲁棒状态估计[J]. 高电压技术, 2022, 48(4): 1332-1342. |
Wang Ze, Zhang Yumin, Ji Xingquan, et al. Robust state estimation of power system based on deep learning andkernel ridge regression[J]. High Voltage Engineering, 2022, 48(4):1332-1342. | |
[17] | 连鸿松, 张少涵, 张逸. 基于自适应容积卡尔曼滤波算法的电力系统动态谐波状态估计[J]. 智慧电力, 2020, 48(6):14-19,53. |
Lian Hongsong, Zhang Shaohan, Zhang Yi. Dynamic harmonic state estimation of power system based on adaptive volumetric Kalman filter[J]. Smart Power, 2020, 48(6):14-19,53. | |
[18] |
Netto M, Mili L. A robust data-driven koopman Kalman filter for power systems dynamic state estimation[J]. IEEE Transactions on Power Systems, 2018, 33(6):7228-7237.
doi: 10.1109/TPWRS.2018.2846744 |
[19] |
Zhao J, Mili L, Pires R C. Statistical and numerical robust state estimator for heavily loaded power systems[J]. IEEE Transactions on Power Systems, 2018, 33(6):6904-6914.
doi: 10.1109/TPWRS.59 |
[20] | 徐飞阳, 薛安成, 常乃超, 等. 电力系统同步相量异常数据检测与修复研究现状与展望[J]. 中国电机工程学报, 2021, 41(20):6869-6886. |
Xu Feiyang, Xue Ancheng, Chang Naichao, et al. Research status and prospects of detection,correction and recovery for abnormal synchrophasor data in power system[J]. Proceedings of the CSEE, 2021, 41(20):6869-6886. | |
[21] | 徐艳春, 刘晓明, 李振华, 等. PMU准实时数据对主动配电网抗差估计的影响[J]. 电力自动化设备, 2020, 40(10):15-22. |
Xu Yanchun, Liu Xiaoming, Li Zhenhua, et al. Influence of PMU quasi-real-time data on robust estimation of active distribution network[J]. Electric Power Automation Equipment, 2020, 40(10):15-22. | |
[22] | 曾顺奇, 吴杰康, 李欣, 等. 基于动态区间优化方法的主动配电网抗差状态估计[J]. 南方电网技术, 2021, 15(9):24-34. |
Zeng Shunqi, Wu Jiekang, Li Xin, et al. Robust state estimation of active distribution network based on dynamic interval optimization[J]. Southern Power System Technology, 2021, 15(9):24-34. | |
[23] | Saunders C S, Liu G, Yang Y, et al. Data-driven distributed analytics and control platform for smart grid situational awareness[J]. Csee Journal of Power & Energy Systems, 2016, 2(3):51-58. |
[24] |
Xiao J, Zhang B, Luo F. Distribution network security situation awareness method based on security distance[J]. IEEE Access, 2019, 7(3):37855-37864.
doi: 10.1109/Access.6287639 |
[25] |
Brahma S, Kavasseri R, Cao H, et al. Real-time identification of dynamic events in power systems using PMU data,and potential applications-models,promises, and challenges[J]. IEEE Transactions on Power Delivery, 2016, 32(1):294-301.
doi: 10.1109/TPWRD.2016.2590961 |
[26] |
Lazzaretti A E, Santos S L F, Küster K K, et al. An integrated monitoring system and automatic data analysis to correlate lightning activity and faults on distribution networks[J]. Electric Power Systems Research, 2017, 153(12):66-72.
doi: 10.1016/j.epsr.2016.10.005 |
[27] |
Ma D, Hu X, Zhang H, et al. A hierarchical event detection method based on spectral theory of multidimensional matrix for power system[J]. IEEE Transactions on Systems, Man,and Cybernetics:Systems, 2019, 51(4):2173-2186.
doi: 10.1109/TSMC.6221021 |
[28] |
Korda M, Mezić I. Linear predictors for nonlinear dynamical systems:Koopman operator meets model predictive control[J]. Automatica, 2018, 93(7):149-160.
doi: 10.1016/j.automatica.2018.03.046 |
[29] | Surana A, Banaszuk A. Linear observer synthesis for nonlinear systems using Koopman operator framework[J]. IFAC-Papers on Line, 2016, 49(18):716-723. |
[30] |
Mauroy A, Goncalves J. Koopman-based lifting techniques for nonlinear systems identification[J]. IEEE Transactions on Automatic Control, 2019, 65(6): 2550-2565.
doi: 10.1109/TAC.9 |
[31] |
Susuki Y, Mezić I. Nonlinear Koopman modes and power system stability assessment without models[J]. IEEE Transactions on Power Systems, 2013, 29(2):899-907.
doi: 10.1109/TPWRS.2013.2287235 |
[32] | Susuki Y, Hamasaki R, Ishigame A. Estimation of power system inertia using nonlinear Koopman modes[C]. Oregon: IEEE Power & Energy Society General Meeting, 2018:1007-1015. |
[33] | He X, Ai Q, Qiu R C, et al. A big data architecture design for smart grids based on random matrix theory[J]. IEEE Transactions on Smart Grid, 2015, 8(2):674-686. |
[34] |
He X, Chu L, Qiu R C, et al. A novel data-driven situation awareness approach for future grids-using large random matrices for big data modeling[J]. IEEE Access, 2018, 6(5): 13855-13865.
doi: 10.1109/Access.6287639 |
[35] | 孙毅, 张健, 许鹏, 等. 基于人工智能代理的负荷态势感知及调控方法[J]. 电力系统自动化, 2019, 43(3):178-186. |
Sun Yi, Zhang Jian, Xu Peng, et al. Load situation awareness and control method based on artificial intelligence agent[J]. Automation of Electric Power Systems, 2019, 43(3):178-186. | |
[36] | 肖白, 肖志峰, 姜卓, 等. 基于降噪自编码器,奇异谱分析和长短期记忆神经网络的空间电力负荷态势感知[J]. 中国电机工程学报, 2021, 41(14):4858-4867. |
Xiao Bai, Xiao Zhifeng, Jiang Zhuo, et al. Spatial load situation awareness based on denoising autoencoder, singular spectrum analysis and long short-term memory neural networks[J]. Proceedings of the CSEE, 2021, 41(14):4858-4867. | |
[37] | 金鑫, 李龙威, 季佳男, 等. 基于大数据和优化神经网络短期电力负荷预测[J]. 通信学报, 2016, 37(S1):36-42. |
Jin Xin, Li Longwei, Ji Jianan, et al. Power short-term load forecasting based on big data and optimization neural network[J]. Journal on Communications, 2016, 37(S1):36-42. | |
[38] | 沈一民, 何涵, 曹培森, 等. 基于人工智能代理的电力负荷态势感知及调控方法研究[J]. 电子设计工程, 2021, 29(9):112-115,120. |
Shen Yimin, He Han, Cao Peisen, et al. Research on power load situation awareness and regulation method based on artificial intelligence agent[J]. Electronic Design Engineering, 2021, 29(9):112-115,120. | |
[39] | 金明辉. 基于状态评估的智能配电网态势感知方法研究[J]. 电网与清洁能源, 2020, 36(5):69-74. |
Jin Minghui. Research on situational sensing method of intelligent distribution network based on state assessment[J]. Power System and Clean Energy, 2020, 36(5):69-74. | |
[40] | 闪鑫, 陆晓, 翟明玉, 等. 人工智能应用于电网调控的关键技术分析[J]. 电力系统自动化, 2019, 43(1):49-57. |
Shan Xin, Lu Xiao, Zhai Mingyu, et al. Analysis of key technologies for artificial intelligence applied to power grid dispatch and control[J]. Automation of Electric Power Systems, 2019, 43(1):49-57. | |
[41] | Hui H, Rong J, Wang S. Ultra-short-term prediction of wind power based on fuzzy clustering and RBF neural network[J]. Advances in Fuzzy Systems, 2018, 2018(9):42-48. |
[42] | 王育飞, 付玉超, 薛花. 计及太阳辐射和混沌特征提取的光伏发电功率DMCS-WNN预测法[J]. 中国电机工程学报, 2019, 39(S1):63-71. |
Wang Yufei, Fu Yuchao, Xue Hua. DMCS-WNN prediction method of photovoltaic power generation by considering solar radiation and chaotic feature extraction[J]. Proceedings of the CSEE, 2019, 39(S1):63-71. | |
[43] | 韩自奋, 景乾明, 张彦凯, 等. 风电预测方法与新趋势综述[J]. 电力系统保护与控制, 2019, 47(24):178-187. |
Han Zifen, Jing Qianming, Zhang Yankai, et al. Review of wind power forecasting methods and new trends[J]. Power System Protection and Control, 2019, 47(24):178-187. | |
[44] | 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4):1129-1143. |
Sun Rongfu, Zhang Tao, He Qing, et al. Review on key technologies and applications in wind power forecasting[J]. High Voltage Engineering, 2021, 47(4):1129-1143. | |
[45] |
Lin Z, Wen F, Ding Y, et al. WAMS-based coherency detection for situational awareness in power systems with renewables[J]. IEEE Transactions on Power Systems, 2018, 33(5):5410-5426.
doi: 10.1109/TPWRS.59 |
[46] |
Liu Y, Sun K, Liu Y. A measurement-based power system model for dynamic response estimation and instability warning[J]. Electric Power Systems Research, 2015, 12(4):1-9.
doi: 10.1016/0378-7796(87)90054-X |
[47] |
Mahapatra K, Lu S, Sengupta A, et al. Power system disturbance classification with online event-driven neuromorphic computing[J]. IEEE Transactions on Smart Grid, 2020, 12(3):2343-2354.
doi: 10.1109/TSG.2020.3043782 |
[48] | 陈碧云, 陆智, 李滨. 计及多类型信息扰动的配电网可靠性评估[J]. 电力系统自动化, 2019, 43(19):103-110. |
Chen Biyun, Lu Zhi, Li Bin. Reliability assessment of distribution network considering multiple types of information disturbances[J]. Automation of Electric Power Systems, 2019, 43(19):103-110. | |
[49] | 孟宪珍, 张艳, 安琪, 等. 电动汽车接入充电对配电网电压波动的影响[J]. 电网与清洁能源, 2021, 37(2):91-98. |
Meng Xianzhen, Zhang Yan, An Qi, et al. Influence of electric vehicle access charging on voltage fluctuation of distribution network[J]. Power System and Clean Energy, 2021, 37(2):91-98. | |
[50] |
Guo Y, Chen R, Shi J, et al. Determination of the power transmission line ageing failure probability due to the impact of forest fire[J]. IET Generation,Transmission & Distribution, 2018, 12(16):3812-3819.
doi: 10.1049/gtd2.v12.16 |
[51] | 徐立立, 杨超, 曾浩然. 基于改进鲸鱼算法的含DG配电网故障区段定位[J]. 电子科技, 2023, 36(1):15-20,27. |
Xu Lili, Yang Chao, Zeng Haoran. Fault section location of distribution network with DG based on improved whale algorithm[J]. Electronic Scinence and Tecnology, 2023, 36(1):15-20,27. | |
[52] | 刘洪, 朱振环, 马康. 基于情景分析的配电网运行风险预警方法[J]. 电力系统及其自动化学报, 2015, 27(5):39-44. |
Liu Hong, Zhu Zhenhuan, Ma Kang. Distribution network operation risk forewarning based on scenario analysis[J]. Proceedings of the CSU-EPSA, 2015, 27(5):39-44. | |
[53] | 徐特威, 鲁宗相, 乔颖, 等. 基于典型故障与环境场景关联识别的城市配电网运行风险预警方法[J]. 电网技术, 2017, 41(8):2577-2584. |
Xu Tewei, Lu Zongxiang, Qiao Ying, et al. A risk warning method for urban distribution network based on associated recognition of typical fault and environment scenario[J]. Power Systems Technology, 2017, 41(8):2577-2584. | |
[54] | 张稳, 盛万兴, 刘科研, 等. 计及天气因素相关性的配电网故障风险等级预测方法[J]. 电网技术, 2018, 42(8):2391-2398. |
Zhang Wen, Sheng Wanxing, Liu Keyan, et al. A predictionmethod of fault risk level for distribution network considering correlation of weather factors[J]. Power Systems Technology, 2018, 42(8):2391-2398. | |
[55] | 王成斌, 贠志皓, 张恒旭, 等. 基于微型PMU的配电网多分支架空线路参数无关故障定位算法[J]. 电网技术, 2019, 43(9):3202-3211. |
Wang Chengbin, Yun Zhihao, Zhang Hengxu, et al. Parameter-free fault location algorithm for multi-terminal overhead transmission line of distribution network based on μMPMU[J]. Power Systems Technology, 2019, 43(9): 3202-3211. | |
[56] | 王雪文, 石访, 张恒旭, 等. 基于暂态能量的小电流接地系统单相接地故障区段定位方法[J]. 电网技术, 2019, 43(3):818-825. |
Wang Xuewen, Shi Fang, Zhang Hengxu, et al. A single-phase earth fault location method based on transient energy for non-effectively grounded system[J]. Power Systems Technology, 2019, 43(3):818-825. |
[1] | 王鸽,杨睿华,惠维,赵季中. 基于多源数据关联融合的交通图像深度补全技术[J]. 电子科技, 2023, 36(10): 95-102. |
[2] | 徐立立,杨超,曾浩然. 基于改进鲸鱼算法的含DG配电网故障区段定位[J]. 电子科技, 2023, 36(1): 15-20. |
[3] | 史振利,魏业文. 基于粒子群算法的主动配电网多目标优化调度[J]. 电子科技, 2022, 35(9): 7-14. |
[4] | 杜鹏,包晓安,胡逸飞,陈迪荣. 基于卡尔曼滤波的无线传感网时空数据融合算法[J]. 电子科技, 2022, 35(6): 21-27. |
[5] | 施震华,张娜,包晓安,宋杰. 基于分批估计的自适应加权数据融合算法[J]. 电子科技, 2022, 35(5): 19-25. |
[6] | 肖欣招,刘建旭,伍国靖,付东翔. 三维流场测量中的微风量多传感器数据融合[J]. 电子科技, 2021, 34(12): 81-86. |
[7] | 李康. 多模态特征融合的网络安全态势评估[J]. 电子科技, 2020, 33(12): 28-31. |
[8] | 唐阳,李君豪,熊双菊,谢诗雨,王劲峰. 基于小波分析的地下电缆故障定位仿真研究[J]. 电子科技, 2019, 32(9): 60-64. |
[9] | 宋寿鹏,申静静,卢翠娥. 可视化与非可视化特征融合超声3D目标识别研究[J]. 电子科技, 2019, 32(5): 5-6. |
[10] | 杨丝琪,陈维,张晴晴,谢烨. 基于规则推理的输电网络故障诊断方法[J]. 电子科技, 2019, 32(3): 42-46. |
[11] | 陈冠宇,刘宇红,李乐乐. 基于模糊逻辑与数据融合的智能导盲手杖[J]. , 2016, 29(9): 114-. |
[12] | 周红坤. 小型无人机多传感器组合导航系统设计与实现[J]. , 2016, 29(8): 10-. |
[13] | 马福民. 基于复合制导的数据融合抗干扰技术[J]. , 2016, 29(5): 55-. |
[14] | 曾海兵,谢永亮,陈珂. 提高雷达低空探测能力的措施研究[J]. , 2016, 29(3): 164-. |
[15] | 惠黎明. 传感器数据融合仿真测试平台的设计与实现[J]. , 2014, 27(5): 103-. |
|