[1] |
Gu J X, Wang Z H, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition:The Journal of the Pattern Recognition Society, 2018, 77(9):354-377.
|
[2] |
Lawrence Z, Piotr D. Edge boxes:Locating object proposals from edges[C]. Zurich: European Conference on Computer Vision, 2014:162-169.
|
[3] |
Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[C]. Montreal: Proceedings of Advances in Neural Information Processing Systems, 2015:805-812.
|
[4] |
程旭, 宋晨, 郑钰辉. 基于深度学习的通用目标检测研究综述[J]. 电子学报, 2021, 49(7):1428-1438.
doi: 10.12263/DZXB.20200570
|
|
Cheng Xu, Song Chen, Zheng Yuhui. A survey of generic object detection methods based on deep learning[J]. Acta Electronica Sinica, 2021, 49(7):1428-1438.
doi: 10.12263/DZXB.20200570
|
[5] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Columbus: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014:78-87.
|
[6] |
Girshick R. Fast R-CNN[C]. Santiago: International Conference on Computer Vision, 2015:366-378.
|
[7] |
Sermanet P, Eigen D, Zhang X, et al. OverFeat:Integrated recognition,localization and detection using convolutional networks[C]. Scottsdale: International Conference on Learning Representations, 2013:264-275.
|
[8] |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified,real-time object detection[C]. Boston: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:597-605.
|
[9] |
Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multi box detector[C]. Amsterdam: Proceedings of European Conference on Computer Vision, 2016:369-378.
|
[10] |
Redmon J, Farhadi A. YOLO9000:Better,faster, stronger[C]. Honolulu: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017:1190-1230.
|
[11] |
Redmon J, Farhadi A. YOLOv3:An incremental improvement[C]. Wellington: IEEE Conference on Computer Vision and Pattern Recognition, 2018:752-768.
|
[12] |
Lim J S, Astrid M, Yoon H J, et al. Small object detection using context and attention[C]. Jeju island: International Conference on Artificial Intelligence in Information and Communication, 2021:593-599.
|
[13] |
郭磊, 王邱龙, 薛伟. 基于改进YOLOv5的小目标检测算法[J]. 电子科技大学学报, 2022, 51(2):251-258.
|
|
Guo Lei, Wang Qiulong, Xue Wei. A small object detection algorithm based on improved YOLOv5[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(2):251-258.
|
[14] |
邱天衡, 王玲, 王鹏. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13):63-73.
doi: 10.3778/j.issn.1002-8331.2202-0093
|
|
Qiu Tianheng, Wang Ling, Wang Peng. Research on object detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(13):63-73.
doi: 10.3778/j.issn.1002-8331.2202-0093
|
[15] |
张寅, 朱桂熠, 施天俊. 基于特征融合与注意力的遥感图像小目标检测[J]. 光学学报, 2022, 42(24):140-150.
|
|
Zhang Yin, Zhu Guiyi, Shi Tianjun. Small object detection in remote sensing images based on feature fusionand attention[J]. Acta Optica Sinica, 2022, 42(24):140-150.
|
[16] |
Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context[J]. European Conference on Computer Vision, 2014(4):740-755.
|
[17] |
李昂, 孙士杰, 张朝阳. 改进YOLOv5s的轨道障碍物检测模型轻量化研究[J]. 计算机工程与应用, 2023, 59(4):197-207.
doi: 10.3778/j.issn.1002-8331.2208-0045
|
|
Li Ang, Sun Shijie, Zhang Chaoyang. Research on lightweight of improved YOLOv5 track obstacle detectio model[J]. Computer Engineering and Applications, 2023, 59(4):197-207.
doi: 10.3778/j.issn.1002-8331.2208-0045
|
[18] |
Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet:A new backbone that can enhance learning capability of CNN[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020:198-206.
|
[19] |
Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]. Honolulu: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017:357-368.
|
[20] |
Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:506-522.
|
[21] |
Pan X, Ge C, Lu R, et al. On the integration of self-attention and convolution[EB/OL].(2021-11-29) [2022-09-26] https://arxiv.org/abs/2111.14556.
|
[22] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:778-789.
|
[23] |
Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union:A metric and a loss for bounding box regression[C]. Long Beach: Computer Vision and Pattern Recognition, 2019:3012-3022.
|
[24] |
Zhora G. SIoU Loss:More powerful learning for bounding box regression[EB/OL].(2022-05-25) [2022-09-26] https://arxiv.org/abs/2205.12740.
|
[25] |
Everingham M, Eslami S M A, Gool L V, et al. The pascal, visual object classes challenge:A retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136.
doi: 10.1007/s11263-014-0733-5
|