电子科技 ›› 2024, Vol. 37 ›› Issue (2): 14-22.doi: 10.16180/j.cnki.issn1007-7820.2024.02.003

• • 上一篇    下一篇

基于卷积与自注意力聚合的小目标检测

王小铸,于莲芝   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2022-09-27 出版日期:2024-02-15 发布日期:2024-01-18
  • 作者简介:王小铸(1998-),男,硕士研究生。研究方向:目标检测。|于莲芝(1966-),女,博士,副教授。研究方向:图像处理、大数据、路径规划。
  • 基金资助:
    国家自然科学基金(61603257)

Small Object Detection Based on Convolution and Self-Attention of Aggregation

WANG Xiaozhu,YU Lianzhi   

  1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093,China
  • Received:2022-09-27 Online:2024-02-15 Published:2024-01-18
  • Supported by:
    National Natural Science Foundation ofChina(61603257)

摘要:

在多数目标检测公开数据集中,小目标检测是一个研究热点。针对检测器在多尺寸检测场景下对小目标检测精度不足的问题,文中提出基于YOLOv5s(You Only Look Once version 5s)的小目标检测改进模型。模型在检测器的特征提取网络中加入卷积自注意力聚合残差块来提升特征提取能力,同时从浅层网络中引入新的特征图增强小目标的特征信息,改进特征融合网络结构,以便充分利用新引入的浅层特征。引入SIOU Loss替换原GIOU Loss矩形框损失函数,提升检测精度和训练速度。实验结果表明,在PASCAL VOC的2007和2012数据集上,改进模型检测精度比YOLOv5s提高0.012,小目标检测精度比YOLOv5s提高0.023;在MS COCO数据集上改进模型比YOLOv5s的检测精度提高0.001,小目标检测精度比YOLOv5s提高0.009。

关键词: 小目标, 目标检测, YOLOv5s, 卷积神经网络, 自注意力, ACmix, SIOU Loss, 残差网络

Abstract:

Small object detection is a research hotspot in most object detection open datasets. In view of the problem of insufficient detection accuracy of small targets in multi-size detection scenarios, an improved small target detection model based on YOLOv5s(You Only Look Once version 5s) is proposed in this study.A convolution self-attention aggregation residual block is added to the feature extraction network of the detector to improve the feature extraction ability, and a new feature graph is introduced from the shallow network to enhance the feature information of small object. The feature fusion network structure is improved to make full use of the newly introduced shallow features. SIOU Loss is introduced to replace the original GIOU Loss rectangular frame loss function to improve the detection accuracy and training speed.The experimental results show that the detection accuracy of the improved model is 0.012 higher than YOLOv5s on the 2007 and 2012 data sets of PASCAL VOC, and the small object detection accuracy is 0.023 higher than YOLOv5s. The detection accuracy of the imporved model in MS COCO data set is 0.001 higher than YOLOv5s, and the detection accuracy of small objects is 0.009 higher than YOLOv5s.

Key words: small object, object detection, YOLOv5s, convolutional neural network, self-attention, ACmix, SIOU Loss, residual network

中图分类号: 

  • TN247