[1] |
刘丽君, 张生栋. 放射性废物冷坩埚玻璃固化技术发展分析[J]. 原子能科学技术, 2015, 49(4):589-596.
doi: 10.7538/yzk.2015.49.04.0589
|
|
Liu Lijun, Zhang Shengdong. Analysis of technical development of vitrificating radioactive waste in cold crucible induction melter[J]. Atomic Energy Science and Technology, 2015, 49(4):589-596
doi: 10.7538/yzk.2015.49.04.0589
|
[2] |
王建晨, 陈靖. 我国高放废液中铯分离研究进展[J]. 核化学与放射化学, 2019, 41(1):27-39.
doi: 10.7538/hhx.2019.41.01.0027
|
|
Wang Jianchen, Chen Jing. Progress on partitioning of cesium from high level liquid waste in China[J]. Journal of Nuclear and Radiochemistry, 2019, 41(1):27-39.
doi: 10.7538/hhx.2019.41.01.0027
|
[3] |
Vernaz É, Bruezière J. History of nuclear waste glass in France[J]. Procedia Materials Science, 2014, 7(1):3-9.
|
[4] |
李玉松, 张生栋, 鲜亮, 等. CIAE高放废液固化技术研发进展[J]. 原子能科学技术, 2020, 54(S1):126-36.
|
|
Li Yusong, Zhang Shengdong, Xian Liang, et al. Progress in research and development of vitrification technology for high-level radioactive liquid waste at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(S1):126-36.
|
[5] |
李玉松, 王泽学, 张生栋, 等. 冷坩埚技术处理动力堆乏燃料高放废液的应用前景分析[J]. 核化学与放射化学, 2023, 45(1):1-7.
|
|
Li Yusong, Wang Zexue, Zhang Shengdong, et al. Prosepective application of vitrificating high-level liquid waste from power reactor spent fuel in cold crucible induction melter[J]. Journal of Nuclear and Radiochemistry, 2023, 45(1):1-7.
|
[6] |
王泽学, 李宝军, 李玉松, 等. 高放废液冷坩埚玻璃固化自适应负压调节系统的设计[J]. 原子能科学技术, 2022, 56(12):2607-2615.
|
|
Wang Zexue, Li Baojun, Li Yusong, et al. Design of adaptive negative pressure regulating system for glass solidification of HLLW by cold crucible[J]. Atomic Energy Science and technology, 2022, 56(12):2607-2615.
doi: 10.7538/yzk.2021.youxian.0523
|
[7] |
张安琪, 王泽学, 龙浩骑. 基于层次分析法的高放废液冷坩埚系统中煅烧炉的故障诊断与改进[J]. 广东化工, 2023, 50(3):110-112.
|
|
Zhang Anqi, Wang Zexue, Long Haoqi. Fault diagnosis and improvement of the calciner in high-level liquid waste cold crucible system based on analytic hierarchy process[J]. Guangdong Chemical Industry, 2023, 50(3): 110-112.
|
[8] |
王泽学, 李玉松, 朱冬冬, 等. Φ100冷坩埚玻璃固化高频电源多物理场耦合仿真研究[J]. 原子能科学技术, 2023, 57(6):1076-1088.
doi: 10.7538/yzk.2022.youxian.0624
|
|
Wang Zexue, Li Yusong, Zhu Dongdong, et al. Multi-physical field coupling simulation of Φ100 cold crucible glass solidification high frequency power supply[J]. Aomic Energy Science and Technology, 2023, 57(6):1076-1088.
|
[9] |
周美兰, 李艳萍, 王吉昌. 高频感应加热电源系统设计[J]. 哈尔滨理工大学学报, 2015, 20(1):50-55.
|
|
Zhou Meilan, Li Yanping, Wang Jichang. Design of high frequency induction heating power supply system[J]. Journal of Harbin University of Technology, 2015, 20(1): 50-55
|
[10] |
石新春, 马莽原, 付超, 等. 基于SiC器件的固态超高频感应加热电源[J]. 电力电子技术, 2019, 53(1):72-74.
|
|
Shi Xinchun, Ma Mangyuan, Fu Chao, et al. A ultra-high-frequency induction heating power supply based on SiC devices[J]. Power Electronics, 2019, 53(1): 72-74.
|
[11] |
Gopalakrishnan S, Thess A. A simplified mathematical model of glass melt convection in a cold crucible induction melter[J]. International Journal of Thermal Sciences, 2012, 60(7):142-152.
|
[12] |
Chen R, Yang Y, Wang Q, et al. Dimensionless parameters controlling fluid flow in electromagnetic cold crucible[J]. Journal of Materials Processing Technology, 2017, 255(10):242-251.
|
[13] |
Song J H, Min B T, Kim J H, et al. An electromagnetic and thermal analysis of a cold crucible melting[J]. International Communications in Heat and Mass Transfer, 2005, 32(10):1325-1336.
|
[14] |
Gross C, Assmus W, Muiznieks A, et al. Power consumption of Skull melting,part I:Analytical aspects and experiments[J]. Crystal Research and Technology, 1999, 34(3):319-328.
|
[15] |
丁慧慧, 邵婷婷, 乔曦. 基于BP神经网络的小角度井斜方位角误差补偿研究[J]. 电子科技, 2022, 35(5):33-37.
|
|
Ding Huihui, Shao Tingting, Qiao Xi. Research on azimuth error compensation based on BP neural network at small-angle deviation[J]. Electronic Science and Technology, 2022, 35(5):33-37.
|
[16] |
周永长, 黄亚宇. 基于BP神经网络建立二次润叶工艺参数的预测模型[J]. 电子科技, 2022, 35(9):79-86.
|
|
Zhou Yongchang, Huang Yayu. Establishment of a predictive model of the process parameters of secondary moisturzing based on BP neural network[J]. Electronic Science and Technology, 2022, 35(9):79-86.
|
[17] |
谢世龙, 张海搏, 张弛, 等. 基于模拟退火法的光伏阵列铺设倾角的确定[J]. 电子科技, 2015, 28(3):148-149,153.
|
|
Xie Shilong, Zhang Haibo, Zhang Chi, et al. Laying angle determination of photovoltaic array based on simulated annealing algorithm[J]. Electronic Science and Technology, 2015, 28(3):148-149,153.
|
[18] |
陈华根, 吴健生, 王家林, 等. 模拟退火算法机理研究[J]. 同济大学学报(自然科学版), 2004, 48(6):802-805.
|
|
Chen Huagen, Wu Jiansheng, Wang Jialin, et al. Mechanism study of simulated annealing algorithm[J]. Journal of Tongji University(Nature Science), 2004, 48(6):802-805.
|
[19] |
王丰雪, 陈家琪. 一种结合模拟退火和贪心策略的社团识别算法[J]. 电子科技, 2016, 29(2):8-11.
|
|
Wang Fengxue, Chen Jiaqi. A community detection combining simulated annealing and greedy method[J]. Electronic Science and Technology, 2016, 29(2):8-11.
|