电子科技 ›› 2024, Vol. 37 ›› Issue (11): 78-84.doi: 10.16180/j.cnki.issn1007-7820.2024.11.011

• • 上一篇    下一篇

基于脑电信号和瞬时情感强度标签的情感识别方法

甘开宇, 尹钟   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2023-04-13 出版日期:2024-11-15 发布日期:2024-11-21
  • 作者简介:甘开宇(1999-),男,硕士研究生。研究方向:机器学习、情感计算。
    尹钟(1988-),男,博士,副教授。研究方向:认知工作负荷识别、生物医学信号处理、情感计算。
  • 基金资助:
    国家自然科学基金(61703277);上海青年科技英才扬帆计划(17YF1427000)

Emotion Recognition Method Based on EEG and Instantaneous Emotion Intensity Label

GAN Kaiyu, YIN Zhong   

  1. School of Optical-Electrical Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2023-04-13 Online:2024-11-15 Published:2024-11-21
  • Supported by:
    National Natural Science Foundation of China(61703277);Shanghai Sailing Program(17YF1427000)

摘要:

通过机器学习脑电图(Electroencephalogram, EEG)揭示人类大脑活动已成为探索人类内在情感状态的重要方案。由于情感状态变化是动态而非恒定,因此预测情感状态变化是情感识别领域的研究难题。文中提出了一种瞬时情感强度标签生成框架,通过让受试者观看视频来刺激并采集其瞬时情绪强度从而生成一组有监督标签,结合有监督标签与脑电特征生成3组半监督标签对应受试者的瞬时情感状态变化。使用脑电特征与多种机器学习方法分析4组标签对情感状态变化的适用性。通过支持向量机模型在有监督情感强度标签集上对两类、三类和四类情感强度取得了80.02%,54.76%和56.14%的分类精度。实验结果表明,有监督瞬时情感强度标签对不同受试者的脑电数据和情感状态变化更具普适性。

关键词: 机器学习, 脑电图, 情感状态, 情感识别, 标签生成, 瞬时情感强度标签, 普适性标签, 被试特异性标签

Abstract:

Revealing human brain activity through machine learning EEG(Electroencephalogram) has become an important scheme to explore the inner emotional state of humans. Because the change of emotion state is dynamic rather than constant, it is difficult to predict the change of emotion state in the field of emotion recognition. This study proposes a label generation framework for instantaneous emotion intensity. A set of supervised labels is generated by having subjects watch videos that stimulate and capture their instantaneous emotional intensity, and combine the supervised labels with EEG features to generate three sets of semi-supervised labels to correspond to the instantaneous emotional state changes of subjects. In this study, EEG features and various machine learning methods are used to analyze the applicability of four groups of labels to emotional state changes. The support vector machine model achieves 80.02%, 54.76% and 56.14% classification accuracy for two-class, three-class and four-class sentiment intensities on supervised label sets. The experimental results show that the supervised instantaneous emotion intensity labels are more universal for EEG data and emotional state changes across different subjects.

Key words: machine learning, electroencephalogram, emotional state, emotion recognition, label generation, instantaneous emotion intensity label, universal label, subject specific labels

中图分类号: 

  • TP391