电子科技 ›› 2024, Vol. 37 ›› Issue (12): 24-31.doi: 10.16180/j.cnki.issn1007-7820.2024.12.004

• • 上一篇    下一篇

结直肠癌免疫组化图像分级诊断方法

莫卓锐1, 黄强豪2, 张琳2, 曹雨齐2, 葛维挺3, 余明晖1   

  1. 1.华中科技大学 人工智能与自动化学院,湖北 武汉 430074
    2.浙江大学 控制科学与工程学院,浙江 杭州 310027
    3.浙江大学 医学院附属第二医院,浙江 杭州 310009
  • 收稿日期:2023-04-03 出版日期:2024-12-15 发布日期:2024-12-16
  • 作者简介:莫卓锐(1996-),男,硕士研究生。研究方向:决策系统、深度学习、计算机视觉。
    曹雨齐(1994-),女,博士,副研究员。研究方向:医学图像处理、深度学习。
    余明晖(1971-),男,博士,副教授。研究方向:决策支持系统、系统建模与仿真。
  • 基金资助:
    浙江省“尖兵”“领雁”研发攻关计划(2022C03002);军科委基础加强项目(2019-JCJQ-ZD-334-12)

Grading and Diagnostic Method for Colorectal Cancer Immunohistochemical Images

MO Zhuorui1, HUANG Qianghao2, ZHANG Lin2, CAO Yuqi2, GE Weiting3, YU Minghui1   

  1. 1. School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China
    2. College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China
    3. The Second Affiliated Hospital School of Medicine,Zhejiang University,Hangzhou 310009,China
  • Received:2023-04-03 Online:2024-12-15 Published:2024-12-16
  • Supported by:
    "Pioneer" and "Leading Goose" R&D Program of Zhejiang(2022C03002);Basic Reinforcement Project of the Military Science and Technology Commission(2019-JCJQ-ZD-334-12)

摘要:

人体组织病理学检查主要应用于各类肿瘤诊断和治疗,免疫组织化学技术在结直肠癌早期筛查中具有重要的临床意义。为准确判断结直肠癌抑癌基因p53表达程度,文中提出一种基于逐块释放微调策略迁移学习的分级诊断方法,通过图像预处理、有监督模型预训练以及逐块释放微调等步骤将细胞核分割模型的参数迁移至诊断框架中。生成的细胞核分割掩膜进行主成分分析(Principal Component Analysis, PCA)降维和支持向量机(Support Vector Machine, SVM)多元分类最终得到图像诊断结果。该方法在结直肠癌p53蛋白免疫组化(Immunohistochemistry, IHC)图像数据集上进行了验证,模型的Dice值可达到0.887 6,分级准确率达到90.28%。结果表明,所提方法能够对结直肠癌免疫组化图像有效分级,为医生阅片提供可靠的辅助信息。

关键词: 免疫组织化学, 结直肠癌, 病理诊断, 有监督学习, 迁移学习, 细胞核分割, 微调策略, 聚类

Abstract:

Human tissue pathology examination is mainly used for the diagnosis and treatment of various tumors. Immunohistochemical technique has important clinical significance in the early screening of colorectal cancer. In order to accurately determine the expression level of the tumor suppressor gene p53 in colorectal cancer, this study proposes a grading diagnostic method based on transfer learning with block-wise fine-tuning strategy. The parameters of the cell nucleus segmentation model are transferred to the diagnostic framework through image preprocessing, supervised model pre-training, and block-wise fine-tuning. The generated cell nucleus segmentation mask is subjected to PCA(Principal Component Analysis) dimensionality reduction and SVM(Support Vector Machine) multivariate classification to obtain the final image diagnosis result. The proposed method is verified on colorectal cancer p53 protein IHC(Immunohistochemistry) image dataset. Dice value of the model reaches 0.887 6 and classification accuracy reaches 90.28%. The results show that the proposed method can effectively grade the immunohistochemical images of colorectal cancer, and provide reliable auxiliary information for doctors to read the film.

Key words: immunohistochemistry, colorectal cancer, pathological diagnosis, supervised learning, transfer learning, cell segmentation, fine-tuning strategy, clustering

中图分类号: 

  • TP391.41