[1] |
Deo S V, Sharma J, Kumar S. GLOBOCAN report on global cancer burden:Challenges and opportunities for surgical oncologists[J]. Annals of Surgical Oncology, 2022, 29(11):6497-6500.
doi: 10.1245/s10434-022-12151-6
pmid: 35838905
|
[2] |
Fay K. Colorectal cancer risk assessment and precision approaches to screening:Brave new world or worlds apart[J]. Gastroenterology, 2023, 164(5):812-827.
|
[3] |
Burnett-Hartman A N, Newcomb P A, Peters U. Challenges with colorectal cancer family history assessment-motivation to translate polygenic risk scores into practice[J]. Gastroenterology, 2020, 158(2):433-435.
doi: S0016-5085(19)41483-2
pmid: 31682850
|
[4] |
Zhang H, Wen W, Yan J. Application of immunohisto chemistry technique in hydro biological studies[J]. Aquaculture and Fisheries, 2017, 2(3):140-144.
|
[5] |
Hesamian M H, Jia W. Deep learning techniques for medical image segmentation:Achievements and challenges[J]. Journal of Digital Imaging, 2019, 32(4):582-596.
|
[6] |
Tajbakhsh N, Jeyaseelan L. Embracing imperfect datasets:A review of deep learning solutions for medical image segmentation[J]. Medical Image Analysis, 2020, 63(6):693-701.
|
[7] |
Zhang P, Zhong Y, Deng Y, et al. A survey on deep learning of small sample in biomedical image analysis[J]. J-STAGE, 2019, 31(8):117-121.
|
[8] |
Kassani S H, Kassani P H. Deep transfer learning based model for colorectal cancer histopathology segmentation: A comparative study of deep pretrained models[J]. International Journal of Medical Informatics, 2022, 159(3):669-682.
|
[9] |
Raghu M, Zhang C. Transfusion:Understanding transfer learning for medical imaging[C]. Vancouver: Advances in Neural Information Processing Systems, 2019:3347-3357.
|
[10] |
Chen L, Bentley P, Mori K, et al. Self-supervised learning for medical image analysis using image context restoration[J]. Medical Image Analysis, 2019, 58(11):101539-101550.
|
[11] |
Pathak D, Krahenbuhl P. Context encoders:Feature learning by inpainting[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2536-2544.
|
[12] |
Doersch C, Gupta A, Efros A A. Unsupervised visual representation learning by context prediction[C]. Santiago: Proceedings of the IEEE International Conference on Computer Vision,2015:1422-1430.
|
[13] |
Noroozi M, Favaro P. Unsupervised learning of visual representations by solving jigsaw puzzles[C]. Amsterdam:Computer Vision ECCV: The Fourtrrnth European Conference,2016:69-84.
|
[14] |
Naik G R. Advances in principal component analysis:Research and development[M]. Kingswood: Springer,2017:1-252.
|
[15] |
SteinwartI, Christmann A. Support vector machines[M]. Los Alamos: Springer Science & Business Media,2008: 7-12.
|
[16] |
林昌, 周海峰, 陈武. 基于双边滤波的高斯金字塔变换Retinex图像增强算法[J]. 激光与光电子学进展, 2020, 57(16):161019-161023.
|
|
Lin Chang, Zhou Haifeng, Chen Wu. Gaussian pyramid transform Retinex image enhancement algorithm based on bilateral filtering[J]. Laser & Optoelectronics Progress, 2020, 57(16):161019-161023.
|
[17] |
Kapoor A, Singhal A. A comparative study of K-means, K-means++ and fuzzy C-means clustering algorithms[C]. Ghaziabad: The Third International Conference on Computational Intelligence & Communication Technology,2017:1-6.
|
[18] |
Davri A, Birbas E. Deep learning on histopathological images for colorectal cancer diagnosis:A systematic review[J]. Diagnostics, 2022, 12(4):837-846.
|
[19] |
Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]. Munich:Medical Image Computing and Computer-Assisted Intervention: The Eighteenth International Conference,2015:234-241.
|
[20] |
贝琛圆, 于海滨, 潘勉, 等. 基于改进U-Net网络的腺体细胞图像分割算法[J]. 电子科技, 2019, 32(11):18-22.
|
|
Bei Chenyuan, Yu Haibin, Pan Mian, et al. Gland cell image segmentation algorithm based on improved U-Net network[J]. Electronic Science and Technology, 2019, 32(11):18-22.
|
[21] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 2014, 1409(5):1124-1131.
|
[22] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
|
[23] |
Huang G, Liu Z, Van D M L, et al. Densely connected convolutional networks[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708.
|