[1] |
李凯, 左文成, 赵子文, 等. 星载5G小型化天线的设计与分析[J]. 电子科技, 2022, 35(11):7-12.
|
|
Li Kai, Zuo Wencheng, Zhao Ziwen, et al. Design and analysis of spaceborne 5G miniaturized antenna[J]. Electronic Science and Technology, 2022, 35(11):7-12.
|
[2] |
左文成, 赵子文, 徐至江, 等. 基于5G通信的空间站舱内电磁环境分析[J]. 电子科技, 2022, 35(10):1-7.
|
|
Zuo Wencheng, Zhao Ziwen, Xu Zhijiang, et al. Analysis and research of electromagnetic environment in space station cabin based on 5G communication[J]. Electronic Science and Technology, 2022, 35(10):1-7.
|
[3] |
Nagaraju D, Verma Y K. A compact conformal stub-loaded long slot leaky-wave antenna with wide beamwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6):953-957.
|
[4] |
Ali M Z, Khan Q U. High gain backward scanning substrate integrated waveguide leaky wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1):562-565.
|
[5] |
Li H, Wu M, Cheng Y, et al. Leaky-wave antennas as metal rims of mobile handset for mm-wave communications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(7):4142-4147.
|
[6] |
张琪芸, 胡俊, 张田子, 等. 基于漏波阵元的OAM圆阵[J]. 微波学报, 2021, 37(S1):40-43.
|
|
Zhang Qiyun, Hu Jun, Zhang Tianzi, et al. OAM circular array based on leaky wave element[J]. Journal of Microwaves, 2021, 37(S1):40-43.
|
[7] |
Jiang X P, Chen D B. Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurfaces[J]. Optics Express, 2020, 28(2): 34079-34092.
|
[8] |
Yi Y, Zhang A Q. A tunable graphene filtering attenuator based on effective spoof surface plasmon polariton waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(12):5169-5177.
|
[9] |
Pavel M, Arthur K, Dmitry N, et al. SPP waveguide based on the Goos-Hänchen effect[J]. Optics Letters, 2021, 46(10): 4029-4032.
|
[10] |
孙淑鹏, 程用志, 罗辉, 等. 基于戟形人工表面等离激元的紧凑型宽带外抑制带通滤波器[J]. 物理学报, 2023, 72(6): 161-168.
|
|
Sun Shupeng, Cheng Yongzhi, Luo Hui, et al. Compact broadband bandpass filter with wide stopband based on halberd-shaped spoof surface plasmon polariton[J]. Acta Physica Sinica, 2023, 72(6):161-168.
|
[11] |
Lv X, Cao W, Zeng Z, et al. A circularly polarized frequency beam-scanning antenna fed by a microstrip spoof SPP transmission line[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7):1329-1333.
|
[12] |
Tian D, Xu R, Peng G, et al. Low-profile high-efficiency bidirectional endfire antenna based on spoof surface plasmon polaritons[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5):837-840.
|
[13] |
Liao D, Zhang Y, Wang H. Wide-angle frequency-controlled beam-scanning antenna fed by standing wave based on the cutoff characteristics of spoof surface plasmon polaritons[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7):1238-1241.
|
[14] |
Wang J, Zhao L, Hao Z C, et al. Wide-angle frequency beam scanning antenna based on the higher-order modes of spoof surface plasmon polariton[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11):7652-7657.
|
[15] |
Xu J J, Jiang X, Zhang C H, et al. Diffraction radiation based on an anti-symmetry structure of spoof surface-plasmon waveguide[J]. Applied Physics Letters, 2017, 110(2):18-21.
|
[16] |
Wang J, Zhao L, Hao Z C, et al. Wide-angle frequency beam scanning antenna based on the higher-order modes of spoof surface plasmon polariton[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11):7652-7657.
|
[17] |
Seretis A, Sarris C D. Toward physics-based generalizable convolutional neural network models for indoor propagation[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6):4112-4126.
|
[18] |
Bakirtzis S, Chen J, Qiu K, et al. EM DeepRay:An expedient,generalizable and realistic data-driven indoor propagation model[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6):4140-4154.
|
[19] |
ITU Radiocommunication Sector. P.2040-2,Effects of building materials and structures on radiowave propagation above about 100 MHz[S]. Geneva: International Telecommunication Union, 2021.
|