[1] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):196-210.
|
[2] |
胡江宇, 贾树林, 马双宝. 基于改进级联Faster R-CNN的PCB表面缺陷检测算法[J]. 仪表技术与传感器, 2022(7):106-110,126.
|
|
Hu Jiangyu, Jia Shulin, Ma Shuangbao. PCB surface defect detection algorithm based on improved cascaded Faster R-CNN[J]. Instrument Technique and Sensors, 2022(7): 106-110,126.
|
[3] |
杨莉, 张亚楠, 王婷婷, 等. 基于改进Faster R-CNN的钢材表面缺陷检测方法[J]. 吉林大学学报(信息科学版), 2021, 39(4):409-415.
|
|
Yang Li, Zhang Yanan, Wang Tingting, et al. New method for steel surface defect detection based on improved Faster R-CNN[J]. Journal of Jilin University(Information Science Edition), 2021, 39(4):409-415.
|
[4] |
刘琪, 雷景生. 基于改进深度网络的钢材表面缺陷检测[J]. 计算机工程与设计, 2022, 43(9):2654-2661.
|
|
Liu Qi, Lei Jingsheng. Surface defect detection of steel based on improved deep network[J]. Computer Engineering and Design, 2022, 43(9):2654-2661.
|
[5] |
吴珊, 周凤. 基于改进SSD的小目标检测算法[J]. 计算机工程, 2023, 49(7):179-188,195.
doi: 10.19678/j.issn.1000-3428.0065253
|
|
Wu Shan, Zhou Feng. Small target detection based on improved SSD algorithm[J]. Computer Engineering, 2023, 49(7):179-188,195.
doi: 10.19678/j.issn.1000-3428.0065253
|
[6] |
方叶祥, 甘平, 陈俐. 金属表面缺陷检测的改进YOLOv3算法研究[J]. 机械科学与技术, 2020, 39(9):1390-1394.
|
|
Fang Yexiang, Gan Ping, Chen Li. Improved YOLOv3 algorithm for detection of metal surface defect[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(9):1390-1394.
|
[7] |
王新宇, 赵静文, 刘翔, 等. 融合坐标注意力机制的YOLOv3肺结节检测算法[J]. 电子科技, 2024, 37(6):1-6.
|
|
Wang Xinyu, Zhao Jingwen, Liu Xiang, et al. YOLOv3 lung nodule detection based on coordinate attention[J]. Electronic Science and Technology, 2024, 37(6):1-6.
|
[8] |
Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]. Las Vegas: Conference on Computer Vision and Pattern Recognition,2016:779-788.
|
[9] |
Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]. Honolulu: Conference on Computer Vision and Pattern Recognition,2017:6517-6525.
|
[10] |
Farhadi A, Redmon J. YOLOv3:An incremental improvement[C]. Berlin:Computer Vision and Pattern Recognition,2018:1-6.
|
[11] |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2023-04-14] https://arxiv.org/abs/2004.10934.
|
[12] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
|
[13] |
Wang Q L. ECA-Net:Efficient channel attention for deep convolutional neural networks[C]. Seattle: IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:11531-11539.
|
[14] |
Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[C]. Munich: Proceedings of the European Conference on Computer Vision,2018:3-19.
|
[15] |
Rezatofighi C, Seyed H, Hamid P, et al. Generalized intersection over union:A metric and a loss for bounding box regression[C]. Long Beach: IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:658-666.
|
[16] |
Zheng Z, Wang P, Liu W, et al. Distance-IoU loss:Faster and better learning for bounding box regression[EB/OL].(2019-11-19)[2023-04-14] https://arxiv.org/abs/1911.08287.
|
[17] |
Zheng Z, Wang P, Ren D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8):8574-8586.
|
[18] |
Zhang Y F, Ren W, Zhang Z, et al. Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 50(6):146-157.
|
[19] |
Yu H. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4):1493-1504.
doi: 10.1109/TIM.2019.2915404
|