[1] |
Alelign T, Petros B. Kidney stone disease:An update on current concepts[J]. Advances in Urology, 2018, 35(3):306-308.
|
[2] |
Bultitude M. Urolithiasis around the world[J]. BJU International, 2017, 120(5):601-603.
doi: 10.1111/bju.14033
pmid: 29035016
|
[3] |
Zeng G, Mai Z, Xia S, et al. Prevalence of kidney stones in China: An ultrasonography based cross-sectional study[J]. BJU International, 2017, 120(1):109-116.
doi: 10.1111/bju.13828
pmid: 28236332
|
[4] |
Sorokin I, Mamoulakis C, Miyazawa K, et al. Epidemiology of stone disease across the world[J]. World Journal of Urology, 2017, 35(9):1301-1320.
doi: 10.1007/s00345-017-2008-6
pmid: 28213860
|
[5] |
Kanagasingam Y, Xiao D, Vignarajan J, et al. Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care[J]. JAMA Network Open, 2018, 1(5):182-185.
|
[6] |
Miotto R, Wang F, Wang S, et al. Deep learning for healthcare:Review,opportunities and challenges[J]. Briefings in Bioinformatics, 2018, 19(6): 1236-1246.
|
[7] |
Haenssle H A, Winkler J K, Fink C, et al. Skin lesions of face and scalp-classification by a market-approved convolutional neural network in comparison with 64 dermatologists[J]. European Journal of Cancer, 2021, 144(7):192-199
|
[8] |
Rajpurkar P, Irvin J, Ball R L, et al. Deep learning for chest radiograph diagnosis:A retrospective comparison of the CheXNeXt algorithm to practicing radiologists[J]. Plos Medicine, 2018, 15(11):106-109.
|
[9] |
Al-Antari M A, Al-Masni M A, Kim T S. Deep learning computer-aided diagnosis for breast lesion in digital mammogram[J]. Advances in Experimental Medicine and Biology, 2020, 12(13):59-72.
|
[10] |
左斌, 李菲菲. 基于注意力机制和Inf-Net的新冠肺炎图像分割方法[J]. 电子科技, 2023, 36(2):7-10.
|
|
Zuo Bin, Li Feifei. An effective segmentation method for COVID-19 CT image based on attention mechanism and Inf-Net[J]. Electronic Science and Technology, 2023, 36(2):7-10.
|
[11] |
Yann L C, Yoshua B, Geoffrey H. Deep learning[J]. Nature, 2015, 521(7553):436-444.
|
[12] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Conference on Computer Vision and Pattern Recognition, 2016, 18(3):121-127.
|
[13] |
罗枭. 基于深度学习的自然语言处理研究综述[J]. 智能计算机与应用, 2020, 10(4):133-137.
|
|
Luo Xiao. A survey of natural language processing based ondeep learning[J]. Intelligent Computer and Applications, 2020, 10(4):133-137.
|
[14] |
孔祥勇. ChatGPT在医疗行业的创新机遇与挑战[J]. 张江科技评论, 2023, 37(2):68-71.
|
|
Kong Xiangyong. Innovation opportunities and challenges of ChatGPT in the medical industry[J]. Zhangjiang Technology Review, 2023, 37(2):68-71.
|
[15] |
Türk C, Petřík A, Sarica K, et al. EAU guidelines on diagnosis and conservative management of urolithiasis[J]. European Urology, 2016, 69(3):468-474.
doi: 10.1016/j.eururo.2015.07.040
pmid: 26318710
|
[16] |
Liu S, Yi W, Xin Y, et al. Deep learning in medical ultrasound analysis:A review[J]. Engineering, 2019, 5(2):15-19.
|
[17] |
Sudharson S, Kokil P. An ensemble of deep neural networks for kidney ultrasound image classification[J]. Computer Methods and Programs in Biomedicine, 2020, 197(8):57-59.
|
[18] |
Sudharson S, Kokil P. Computer-aided diagnosis system for the classification of multi-class kidney abnormalities in the noisy ultrasound images[J]. Computer Methods and Programs in Biomedicine, 2021, 205(74):607-610
|
[19] |
Tsai M C, Lu H H, Chang Y C, et al. Automatic screening of pediatric renal ultrasound abnormalities:Deep learning and transfer learning approach[J]. JMIR Medical Informatics, 2022, 10(11): 408-410.
|
[20] |
Heidenreich A, Desgrandschamps F, Terrier F. Modern approach of diagnosis and management of acute flank pain: Review of all imaging modalities[J]. European Urology, 2002, 41(4):351-362.
doi: 10.1016/s0302-2838(02)00064-7
pmid: 12074804
|
[21] |
Lee D H, Li Y, Shin B S. Generalization of intensity distribution of medical images using GANs[J]. Human-Centric Computing and Information Sciences, 2020, 10(1):34-39.
|
[22] |
Rani G, Thakkar P, Verma A, et al. KUB-UNet: Segmentation of organs of urinary system from a KUB X-ray image[J]. Computer Methods and Programs in Biomedicine, 2022, 224(7):107-110.
|
[23] |
Liu Y Y, Huang Z H, Huang K W. Deep learning model for computer-aided diagnosis of urolithiasis detection from kidney-ureter-bladder images[J]. Bioengineering-Basel, 2022, 9(12):811-815.
|
[24] |
Allison S J. Stones:Ultrasonography and computed tomography:Performance in detection of kidney stones[J]. Nature Reviews Nephrology, 2014, 10(11):611-613.
doi: 10.1038/nrneph.2014.182
pmid: 25266209
|
[25] |
Caglayan A, Horsanali M O, Kocadurdu K, et al. Deep learning model-assisted detection of kidney stones on computed tomography[J]. International Braz J Urol, 2022, 48(5):830-839.
doi: 10.1590/S1677-5538.IBJU.2022.0132
pmid: 35838509
|
[26] |
Yildirim K, Bozdag P G, Talo M, et al. Deep learning model for automated kidney stone detection using coronal CT images[J]. Computers in Biology and Medicine, 2021, 135(2):45-47.
|
[27] |
Islam M N, Hasan M, Hossain M K, et al. Vision transformer and explainable transfer learning models for auto detection of kidney cyst,stone and tumor from CT-radiography[J]. Scientific Reports, 2022, 12(1):440-444.
|
[28] |
Li D, Xiao C, Liu Y, et al. Deep segmentation networks for segmenting kidneys and detecting kidney stones in unenhanced abdominal CT images[J]. Diagnostics, 2022, 12(8):1788-1790.
|
[29] |
Cui Y, Sun Z, Ma S, et al. Automatic detection and scoring of kidney stones on noncontrast CT images using S.T.O.N.E. nephrolithometry:Combined deep learning and thresholding methods[J]. Molecular Imaging and Biology, 2021, 23(3):436-445.
|
[30] |
Okhunov Z, Friedlander J I, George A K, et al. S.T.O.N.E. nephrolithometry:Novel surgical classification system for kidney calculi[J]. Urology, 2013, 81(6):1154-1159.
|
[31] |
Elton D C, Turkbey E B, Pickhardt P J, et al. A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans[J]. Medical Physics, 2022, 49(4):2545-2554.
doi: 10.1002/mp.15518
pmid: 35156216
|
[32] |
Babajide R, Lembrikova K, Ziemba J, et al. Automated machine learning segmentation and measurement of urinary stones on CT scan[J]. Urology, 2022, 169(2):41-46.
|
[33] |
Cloutier J, Villa L, Traxer O, et al. Kidney stone analysis: "Give me your stone,I will tell you who you are!"[J]. World Journal of Urology, 2015, 33(2):157-169.
|
[34] |
Daudon M, Jungers P, Bazin D, et al. Recurrence rates of urinary calculi according to stone composition and morphology[J]. Urolithiasis, 2018, 46(5):459-470.
doi: 10.1007/s00240-018-1043-0
pmid: 29392338
|
[35] |
Lopez F, Varelo A, Hinojosa O, et al. Assessing deep learning methods for the identification of kidney stones in endoscopic images[J]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2021(5):2778-2781.
|
[36] |
Estrade V, Daudon M, Richard E, et al. Towards automatic recognition of pure and mixed stones using intra-operative endoscopic digital images[J]. BJU International, 2022, 129(2):234-242.
|
[37] |
Estrade V, Daudon M, Richard E, et al. Deep morphological recognition of kidney stones using intra-operative endoscopic digital videos[J]. Physics in Medicine and Biology, 67(16):201-208.
|
[38] |
Fernandez K, Korinek M, Camp J. Automatic detection of calcium phosphate deposit plugs at the terminal ends of kidney tubules[J]. Healthcare Technology Letters, 2019, 6(6):271-274.
doi: 10.1049/htl.2019.0086
pmid: 32038870
|
[39] |
Stone L. Assessing kidney stone composition using deep learning[J]. Nature Reviews Urology, 2020, 17(4):192-193.
doi: 10.1038/s41585-020-0301-4
pmid: 32132704
|
[40] |
Onal E G, Tekgul H. Assessing kidney stone composition using smartphone microscopy and deep neural networks[J]. BJUI Compass, 2022, 3(4):310-315.
doi: 10.1002/bco2.137
pmid: 35783589
|
[41] |
Black K M, Law H, Aldoukhi A, et al. Deep learning computer vision algorithm for detecting kidney stone composition[J]. BJU International, 2020, 125(6):920-924.
doi: 10.1111/bju.15035
pmid: 32045113
|
[42] |
张钹. 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019, 1(1):4-6.
doi: 10.11959/j.issn.2096-6652.201913
|
|
Zhang Bo. Artificial intelligence is entering the post deep-learning era[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1):4-6.
|
[43] |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words:Transformers for image recognition at scale[C]. Online: The Ninth International Conference on Learning Representations,2021:106-111
|