电子科技 ›› 2021, Vol. 34 ›› Issue (4): 70-74.doi: 10.16180/j.cnki.issn1007-7820.2021.04.011

• • 上一篇    下一篇

基于仿射变换的地磁匹配定位算法

严羽灵,唐清善,白创   

  1. 长沙理工大学 物理与电子科学学院,湖南 长沙 410114
  • 收稿日期:2019-12-21 出版日期:2021-04-15 发布日期:2021-04-16
  • 作者简介:严羽灵(1993-),女,硕士研究生。研究方向:地磁导航。|唐清善(1977-),男,博士,讲师。研究方向:数字信号处理、无线通信。
  • 基金资助:
    湖南省教育厅科研项目-优秀青年项目(18B164);“双一流”bepaly手机下载国际合作拓展项目(2019IC18)

Geomagnetic Matching Localization Algorithm Based on Affine Transformation

YAN Yuling,TANG Qingshan,BAI Chuang   

  1. School of Physics & Electronics,Changsha University of Science & Technology,Changsha 410114,China
  • Received:2019-12-21 Online:2021-04-15 Published:2021-04-16
  • Supported by:
    Hunan Provincial Department of Education Research Project-Outstanding Youth Project(18B164);"Double First-Class" Scientific Research International Cooperation Expansion Project(2019IC18)

摘要:

针对惯导系统定位误差随时间累积的问题,提出了一种基于仿射变换的地磁匹配定位算法。通过平方差算法建立匹配轨迹与实测的地磁场特征值的相关性约束,对约束函数进行泰勒展开和离散化,并引入仿射变换模型。将约束函数转化为曲线的位移、角度和伸缩误差的多变量指标函数。根据相关性原则,将地磁匹配问题转化为解非线性方程组。采用Mathematica中的迭代和数值求解方法解非线性方程组,将求得的解输入到MATLAB中进行匹配定位。实验表明,匹配轨迹的最终定位点与真实轨迹的终点相差293.3 m,匹配轨迹与真实轨迹之间的经纬度误差分别为0.003°、0.000 4°,证明此算法具有一定的可行性。

关键词: 仿射变换, 地磁匹配, 平方差算法, 相关性原则, 迭代, 数值求解

Abstract:

For the problem that the positioning error of inertial navigation system accumulated with time, a geomagnetic matching positioning algorithm based on affine transformation is proposed. The correlation constraint between the matched trajectory and the measured geomagnetic field eigenvalue is established by the square difference algorithm. The constraint function is expanded and discretized by Taylor, and the affine transformation model is introduced. The constraint function is transformed into a multivariate index function of the displacement, angle and contraction error of the curve. According to the relativity principle, the geomagnetic matching problem is transformed into solving nonlinear equations. The iterative and numerical method in Mathematica is used to solve the nonlinear equations. The obtained solutions are input into MATLAB for matching and positioning. Experiments show that the final registration point of the matched track differs from the end point of the real track by 293.3 m, and the longitude and latitude errors between the matched track and the real track are 0.003° and 0.000 4° respectively, which verifies the feasibility of the proposed algorithm.

Key words: affine transformation, geomagnetic matching, squared difference algorithm, relevance principle, iteration, numerical solution

中图分类号: 

  • TP301.6