电子科技 ›› 2020, Vol. 33 ›› Issue (1): 39-45.doi: 10.16180/j.cnki.issn1007-7820.2020.01.008

• • 上一篇    下一篇

基于深度学习的代码审查意见有效性评估

段雨佳,鞠婷   

  1. 杭州电子科技大学 计算机学院,浙江 杭州 310000
  • 收稿日期:2018-12-29 出版日期:2020-01-15 发布日期:2020-03-12
  • 作者简介:段雨佳 (1993-),女,硕士研究生。研究方向:软件工程代码审查技术。|鞠婷(1993-),女,硕士研究生。研究方向:自然语言处理技术。
  • 基金资助:
    浙江省自然科学基金(LQ17F020003)

Evaluation of Code Review Comments Based on Deep Learning

DUAN Yujia,JU Ting   

  1. School of Computer Science and Technology,Hangzhou Dianzi University,Hangzhou 310000,China
  • Received:2018-12-29 Online:2020-01-15 Published:2020-03-12
  • Supported by:
    Natural Science Foundation of Zhejiang(LQ17F020003)

摘要:

针对代码审查过程中的代码审查意见对于开发者可能无价值的问题,文中提出了一种基于深度学习长短期记忆网络的代码审查意见有效性评估方法。该方法通过提取代码审查意见中与审查意见有效性相关的特征,并根据这些特征构建评估模型,从而评估审查意见对于开发人员是否有价值。为了验证方法的有效性,文中选取了GitHub上开源Eclipse项目中的审查信息作为实验数据,并将所提方法与其它机器学习方法对比。实验结果表明,该方法可以有效评估审查意见的价值。

关键词: 软件工程, 代码审查, 深度学习, 长短期记忆模型, 词向量, 自然语言处理。

Abstract:

Aiming at the code review comments during the code review process may be of no value to developers, a code review comments evaluation method based on deep learning Long Short-Term Memory networks was proposed, which can effectively extract the features related to validity of the code review comments, then a code review comments evaluation model based on these features was built to judge whether the review comments are useful to the developer. In order to verify the method, the extensive experiments were conducted based on the open source Eclipse project on GitHub as experimental data, and this paper compared the method with other machine learning methods. The experimental results demonstrated that the method effectively evaluate whether the review comment is meaningful and significantly better than the comparison methods.

Key words: software engineering, code review, deep learning, long short-term memory, word embedding, natural language processing

中图分类号: 

  • TP391.1