电子科技 ›› 2021, Vol. 34 ›› Issue (1): 17-22.doi: 10.16180/j.cnki.issn1007-7820.2021.01.004

• • 上一篇    下一篇

杜鹃花各生长期识别与监测研究

裴晓芳1,2,胡敏3   

  1. 1.南京信息工程大学 滨江学院,江苏 无锡214105
    2.南京信息工程大学 江苏省大气环境与装备技术协同创新中心,江苏 南京 210044
    3.南京信息工程大学 电子与信息工程学院,江苏 南京 210044)
  • 收稿日期:2019-10-23 出版日期:2021-01-15 发布日期:2021-01-22
  • 作者简介:裴晓芳(1978-),女,副教授。研究方向:信号处理与应用。胡敏(1991-),女,硕士研究生。研究方向:基于机器学习的模式识别。
  • 基金资助:
    国家自然科学基金(61601229);南京信息工程大学滨江学院课题(2019BJYNG006)

Study on the Identification of Various Growth and Monitoring of Pest and Disease of Rhododendron

PEI Xiaofang1,2,HU Min3   

  1. 1. Binjiang College,Nanjing University of Information Science and Technology,Wuxi 214105,China
    2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing University of Information Science and Technology,Nanjing 210044,China
    3. School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China
  • Received:2019-10-23 Online:2021-01-15 Published:2021-01-22
  • Supported by:
    National Natural Science Foundation of China(61601229);Binjiang College,Nanjing University of Information Science & Technology Research Team(2019BJYNG006)

摘要:

针对传统BoF算法缺乏空间信息的问题,文中提出一种改进式BoF算法,并将其应用于杜鹃花各生长期识别与病虫害监测问题。该算法在基于LAB的颜色特征中融入有序的空间信息,形成了新的空间颜色聚合特征来代替传统颜色直方图,有效解决了颜色特征变化尺度小的问题。该算法提取SURF特征代替原有的SIFT特征,通过一种多类特征学习算法融合颜色特征和SURF特征实现图像分类,并通过进一步分析叶片特征来快速识别杜鹃花植株的生长期与病害。经过仿真得知,基于LAB的颜色聚合向量的改进式BoF模型识别率达到了90.6%,较传统颜色直方图的图像分类方法图像检索速度增加3倍,更容易实现特征融合。

关键词: 改进式BoF算法, 空间颜色聚合特征, SURF, LAB, 多类特征学习, 叶片特征, 特征融合

Abstract:

In view of the problem that the traditional BoF algorithm lacks spatial information, an improved BoF algorithm is proposed and applied to the identification of various growth stages and the monitoring of pest and diseases of Rhododendron in this paper. The ordered spatial information is integrated into the LAB-based color features by this algorithm to form a new spatial color aggregation feature to replace the traditional color histogram, which effectively solved the problem of the small scale of color feature change. Besides, SURF features are extracted to replace the original SIFT features. The image classification is realized by a multi-class features, and the leaf features are further analyzed to quickly identify the growth period and disease of Rhododendron plants. Simulation results show that the recognition rate of the improved BoF model of the LAB-based color aggregation vector is 90.6%. Compared with the image classification method of the traditional histogram, the image retrieval speed is increased by 3 times, making it easier to implement the feature fusion.

Key words: improved BoF algorithm, spatial color aggregation feature, SURF, LAB, multi-class feature learning, leaf features, feature fusion

中图分类号: 

  • TP391.4