电子科技 ›› 2021, Vol. 34 ›› Issue (8): 14-18.doi: 10.16180/j.cnki.issn1007-7820.2021.08.003

• • 上一篇    下一篇

基于时序行为检测的工作流识别

王庆文,胡海洋   

  1. 杭州电子科技大学 计算机学院,浙江 杭州 310018
  • 收稿日期:2020-03-26 出版日期:2021-08-15 发布日期:2021-08-17
  • 作者简介:王庆文(1994-),男,硕士研究生。研究方向:工作流识别、计算机视觉。|胡海洋(1977-),男,博士,教授。研究方向:工作流调度、云计算、移动计算和分布式计算。
  • 基金资助:
    国家自然科学基金(61572162);国家自然科学基金(61272188);国家自然科学基金(61702144);浙江省重点研发计划(2018C01012);浙江省自然科学基金(LQ17F020003)

Workflow Recognition Based on Temporal Action Detection

WANG Qingwen,HU Haiyang   

  1. Computer & Software School, Hangzhou Dianzi University,Hangzhou 310018,China
  • Received:2020-03-26 Online:2021-08-15 Published:2021-08-17
  • Supported by:
    National Natural Science Foundation of China(61572162);National Natural Science Foundation of China(61272188);National Natural Science Foundation of China(61702144);Zhejiang Provincial Key Science and Technology Project Foundation(2018C01012);Natural Science Foundation of Zhejiang Province(LQ17F020003)

摘要:

在智能制造环境中,基于动作识别的工作流识别方法难以定位出视频中工作流活动的开始和结束时间。为了从视频中对工作流中的活动进行时序定位,文中对R-C3D网络模型进行改进并提出了一种基于时序行为检测的工作流识别方法。在文中所提出的工作流识别方法中,采用一种随机稀疏采样策略来减少相邻视频帧的冗余,并使用Res3D网络来提取视频中的时空特征。此外,所提方法通过Soft-NMS消除了高度重叠以及低置信度的提名片段。实验结果证明,相比于R-C3D,文中方法在保证平均精度均值的同时,提高了约80%的训练速度和85%的检测速度,证明了该方法对于工作流识别的有效性。

关键词: 智能制造, 工作流识别, 动作识别, 时序行为检测, 时序定位, 稀疏采样, 时空特征, Soft-NMS

Abstract:

In a complex manufacturing environment, it is difficult for workflow recognition based on action recognition to localize the start and end times of each activity in a workflow from the video. In order to localize the activities temporally in the workflow from the video, according to R-C3D, a workflow recognition framework based on temporal action detection is proposed. The proposed workflow recognition method introduces a random sparse sampling strategy to reduce the redundancy between adjacent frames, and uses Res3D network to extract spatio-temporal features in the video. In addition, Soft-NMS strategy is used to eliminate the highly overlapping and low confidence proposals. Experiment results show that compared with R-C3D, the proposed method can improve the speed of training and detecting about 80% and 85%, respectively without loss of accuracy, proving the effectiveness of the method for workflow identification.

Key words: intelligent manufacturing, workflow recognition, action recognition, temporal action detection, temporal localization, sparse sampling, spatio-temporal features, Soft-NMS

中图分类号: 

  • TP312