电子科技 ›› 2023, Vol. 36 ›› Issue (1): 28-37.doi: 10.16180/j.cnki.issn1007-7820.2023.01.005

• • 上一篇    下一篇

球类运动中人体姿态估计研究进展

张漫秸1,杨芳艳1,季云峰2   

  1. 1.上海理工大学 机械工程学院,上海 200093
    2.上海理工大学 机器智能研究院,上海 200093
  • 收稿日期:2021-06-03 出版日期:2023-01-15 发布日期:2023-01-17
  • 作者简介:张漫秸(1997-),女,硕士研究生。研究方向:数字图像处理。|季云峰(1990-),男,博士,讲师。研究方向:乒乓球机器人。
  • 基金资助:
    国家自然科学基金(61773083);上海市浦江人才计划(2019PJC073)

Research Progress of Body Posture Estimation in Ball Games

ZHANG Manjie1,YANG Fangyan1,JI Yunfeng2   

  1. 1. School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
    2. School of Machine Intelligence Research,University of Shanghai for Science and Technology, Shanghai 200093,China
  • Received:2021-06-03 Online:2023-01-15 Published:2023-01-17
  • Supported by:
    National Natural Science Foundation of China(61773083);The Shanghai Pujiang Program(2019PJC073)

摘要:

针对单个RGB图像,人体姿态估计通过对人体关键点定位来估计人体的位置和关节点位置。球类比赛是一种快速的运动,用主观观察对运动员的技术合法性进行判决无法避免错误。因此,文中利用基于人体姿态估计的运动员姿态分析技术进行辅助训练和辅助判罚,有效避免了传统系统中由于人的主观判断对运动员姿态的错误定位。目前,针对人体姿态估计的研究被分为基于传统算法和基于深度学习算法两种主要方式。在基于深度学习算法的基础上又分为单人人体姿态检测和多人人体姿态检测。基于深度学习算法的人体姿态估计通过构建神经网络,运用机器学习的方法提取图片特征读取图片信息,并在用于人体姿态估计的主流数据集上进行性能对比和分析。将人体姿态估计应用到球类运动中,为运动员的日常训练提供了一定的科学参考,同时也最大程度上保证了运动员比赛中的公平与公正。

关键词: 人体姿态估计, 视频识别, 球类运动, 关键点定位, 特征提取, 神经网络, 目标检测, 辅助训练

Abstract:

Human pose estimation usually uses a single RGB image to locate the key points of human body to estimate the position of human body and joint points. Ball games are usually regarded as fast sports, and errors cannot be avoided in judging the technical legitimacy of players by subjective observation. Therefore,based on the estimation of human body posture, the athlete posture analysis technology is used to assist training and penalty. This method effectively avoids the traditional system positioning the athlete posture due to human subjective judgment error. At present, the research of human pose estimation can be divided into traditional algorithm and deep learning algorithm. Based on the deep learning algorithm, it can be divided into single person pose detection and multi person pose detection.Through the construction of neural network,human pose estimation based on deep learning algorithm uses machine learning method to extract image features and read image information,and perform performance comparison and analysis on mainstream data sets for human pose estimation. The application of human body posture estimation in ball games can provide scientific reference for athletes' daily training, and also ensure the fairness and justice of athletes in the game to the greatest extent.

Key words: human pose estimation, video recognition, ball game, key point positioning, feature extraction, neural network, target detection, supplementary training

中图分类号: 

  • TP751