电子科技 ›› 2023, Vol. 36 ›› Issue (1): 38-43.doi: 10.16180/j.cnki.issn1007-7820.2023.01.006

• • 上一篇    下一篇

融入注意力网络的深度分解机推荐算法

邬彤,于莲芝   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2021-06-03 出版日期:2023-01-15 发布日期:2023-01-17
  • 作者简介:邬彤(1996-),女,硕士研究生。研究方向:数据挖掘、计算广告、推荐系统。|于莲芝(1966-),女,博士,副教授。研究方向:数据挖掘、图像处理等。
  • 基金资助:
    国家自然科学基金(61603257)

The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network

WU Tong,YU Lianzhi   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093, China
  • Received:2021-06-03 Online:2023-01-15 Published:2023-01-17
  • Supported by:
    National Natural Science Foundation of China(61603257)

摘要:

推荐系统能够在海量的信息中找到满足用户个性化需求的信息。随着深度学习的发展,深度学习也开始广泛被推荐系统所应用。CTR预估在推荐系统中起着重要作用,已被应用在个性化推荐、信息检索、在线广告等多个领域。针对推荐系统数据量大且稀疏的问题,文中将注意力网络和xDeepFM模型融合,提出了一种新的基于深度学习的CTR预估模型,即Atte-xDeepFM模型。该模型能够解决特征稀疏问题,有效学习特征之间的交互关系,且不需要手动提取特征工程中的有用信息。在Avazu数据集和Criteo数据集上进行的对比实验证明了文中提出的模型的有效性。与推荐系统CTR预估常用的算法模型对比,文中所提出的模型具有更好的推荐效果。

关键词: 推荐系统, 深度学习, 个性化推荐, 计算广告, CTR预估, 因子分解机, 注意力网络, 特征稀疏

Abstract:

Recommender system can find information that satisfies the user's individual needs from huge amount of information. With the development of deep learning, deep learning has been widely applied in recommender systems. CTR prediction plays an important role in recommender system and has been widely used in many fields such as personalized recommendation, information retrieval, online advertising and so on. For the issue of large and sparse data in recommender system, this study merges xDeepFM model with attention network, and proposes a new CTR prediction model based on deep learning, which is called Atte-xDeepFM model. This model can solve the issue of feature scarcity, effectively learn the interactions relationship between features, and does not need to manually extract useful information in feature engineering. The comparative experiments on Avazu and Criteo data sets prove the effectiveness of the proposed model. Compared with the algorithm model commonly used in CTR prediction, the proposed model has better recommendation effect.

Key words: recommender system, deep learning, personalized recommendation, computational advertising, CTR prediction, factorization machine, attention network, feature sparsity

中图分类号: 

  • TP393