[1] |
张莹, 刘子龙, 万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11):11-20.
|
|
Zhang Ying, Liu Zilong, Wan Wei. UAV vehicle target detection based on faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11):11-20.
|
[2] |
战荫伟, 朱百万, 杨卓. 一种车脸识别算法的研究与应用[J]. 电子科技, 2021, 34(8):1-7.
|
|
Zhan Yinwei, Zhu Baiwan, Yang Zhuo. Research and application of vehicle face recognition algorithm[J]. Electronic Science and Technology, 2021, 34(8):1-7.
|
[3] |
Middleton W E K. Vision through the atmosphere[M]. Berlin:Springer, 1957: 254-287.
|
[4] |
He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12):2341-2353.
doi: 10.1109/TPAMI.2010.168
|
[5] |
Fattal R. Dehazing using color-lines[J]. ACM Transactions on Graphics, 2015, 34(1):1-14.
|
[6] |
Yuan F N, Zhou Y, Xia X, et al. A confidence prior for image dehazing[J]. Pattern Recognition, 2021, 11(9):1-10.
doi: 10.1016/0031-3203(79)90023-2
|
[7] |
Cai B, Xu X, Jia K, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11):5187-5198.
doi: 10.1109/TIP.2016.2598681
pmid: 28873058
|
[8] |
Ren W Q, Liu S, Zhang H, et al. Single image dehazing via multi-scale convolutional neural networks[C]. Amsterdam: Proceedings of the European Conference on Computer Vision, 2016:154-169.
|
[9] |
Li B, Peng X, Wang Z, et al. AOD-Net: All-in-one dehazing network[C].Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017:4780-4788.
|
[10] |
Liu X, Ma Y, Shi Z, et al. GridDehazeNet: Attention-based multi-scale network for image dehazing[C].Seoul: IEEE/CVF International Conference on Computer Vision, 2019:7313-7322.
|
[11] |
Wang T, Zhao L, Huang P C, et al. Haze concentration adaptive network for image dehazing[J]. Neurocomputing, 2021, 43(9):75-85.
|
[12] |
Hong M, Xie Y, Li C, et al. Distilling image dehazing with heterogeneous task imitation[C].Seattle: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3459-3468.
|
[13] |
Wu H, Qu Y, Lin S, et al. Contrastive learning for compact single image dehazing[C].Nashville: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:10546-10555.
|
[14] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
doi: 10.1109/TPAMI.2017.2699184
|
[15] |
Qin X, Wang Z L, Bai Y C, et al. FFA-Net: Feature fusionattention network for single image dehazing[C].New York: Proceedings of the AAAI Conference on Artificial Intelligence, 2020:11908-11915.
|
[16] |
Woo S, Park J, Lee J-Y, et al. CBAM: Convolutional block attention module[C].Munich: The European Conference on Computer Vision, 2018: 3-19.
|
[17] |
Hu J, Shen L, Sun G. Squeeze-and-Excitation networks[C]. Salt Lake City: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
|
[18] |
Han Y, Huang G, Song S, et al. Dynamic neural networks: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021(6):1-7.
|
[19] |
Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C].Zurich: The European Conference on Computer Vision, 2014: 818-833.
|
[20] |
Li X, Wang W, Hu X, et al. Selective kernel networks[C].Long Beach: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:510-519.
|
[21] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2016, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
|
[22] |
Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database[C].Miami: IEEE Conference on Computer Vision and Pattern Recognition, 2009:248-255.
|
[23] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C].San Diego: International Conference on Learning Representations, 2015: 1-14.
|
[24] |
Li B, Ren W, Fu D, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28(1): 492-505.
doi: 10.1109/TIP.83
|
[25] |
Ancuti C O, Ancuti C, Timofte R, et al. O-HAZE: A dehazing benchmark with real hazy and haze-free outdoor images[C].Salt Lake City: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018:867-8678.
|
[26] |
Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
doi: 10.1109/tip.2003.819861
pmid: 15376593
|
[27] |
Berman D, Treibitz T, Avidan S. Non-local image dehazing[C].Las Vegas: IEEE Conference on Computer Vision and Pattern Recognition, 2016:1674-1682.
|
[28] |
Ren W, Ma L, Zhang J, et al. Gated fusion network for single imagedehazing[C].Salt Lake City: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3253-3261.
|
[29] |
Qu Y, Chen Y, Huang J, et al. Enhanced Pix2pix dehazing network[C].Long Beach: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:8152-8160.
|
[30] |
Dong H, Pan J, Xiang L, et al. Multi-Scale boosted dehazing network with dense feature fusion[C].Seattle: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2154-2164.
|