[1] |
朱彤. 能源转型中我国电力能源的结构、问题与趋势[J]. 经济导刊, 2020, 28(6):48-53.
|
|
Zhu Tong. The structure, problems and trends of China's power energy in the energy transition[J]. Economic Herald, 2020, 28(6):48-53.
|
[2] |
刘浏. 能源互联网战略下的电力产业分析[J]. 互联网天地, 2022, 19(8):8-11.
|
|
Liu Liu. Analysis of power industry under the energy internet strategy[J]. China Internet, 2022, 19(8):8-11.
|
[3] |
刘思捷, 白杨, 陈中飞, 等. 碳中和背景下能源电力产业链预警研究框架[J]. 广东电力, 2021, 34(10):1-9.
|
|
Liu Sijie, Bai Yang, Chen Zhongfei, et al. Research framework for early warning of energy and power industry chain under the background of carbon neutrality[J]. Guangdong Electric Power, 2021, 34(10):1-9.
|
[4] |
田英杰, 苏运, 郭乃网, 等. 基于时间序列嵌入的电力负荷预测方法[J]. 计算机应用与软, 2018, 35(11):55-60,73.
|
|
Tian Yingjie, Su Yun, Guo Naiwang, et al. Electricity load forecasting method based on time series embedding[J]. Computer Applications and Software, 2018, 35(11):55-60,73.
|
[5] |
朱健安, 魏云冰, 朱鹏杰, 等. 基于优化灰色傅里叶残差修正的中长期负荷预测[J]. 电子科技, 2021, 34(12):49-55.
|
|
Zhu Jian'an, Wei Yunbing, Zhu Pengjie, et al. Medium and long-term load forecasting based on optimized gery fourier residual correction[J]. Electronic Science and Technology, 2021, 34(12):49-55.
|
[6] |
刘洪笑, 向勉, 周丙涛, 等. 基于Informer的长序列时间序列电力负荷预测[J]. 湖北民族大学学报(自然科学版), 2021, 39(3):326-331.
|
|
Liu Hongxiao, Xiang Mian, Zhou Bingtao, et al. Power load forecasting for long sequence time-series based on Informer[J]. Journal of Hubei Minzu University(Natural Science Edition), 2021, 39(3):326-331.
|
[7] |
文彦飞, 王万雄. 基于FA-SVR-LSTM组合模型的短期电力负荷预测[J]. 电子科技, 2023, 36(9):1-7.
|
|
Wen Yanfei, Wang Wanxiong. Short-term power load forecasting based on FA-SVR-LSTM combined model[J]. Electronic Science and Technology, 2023, 36(9):1-7.
|
[8] |
杨召, 徐姣新. 基于分位数回归平均的电力负荷统计建模与预测[J]. 计算机应用与软件, 2021, 38(11):98-103,204.
|
|
Yang Zhao, Xu Jiaoxin. Electric load modeling and forecasting based on quantile regression average[J]. Computer Applications and Software, 2021, 38(11):98-103,204.
|
[9] |
张扬. 基于改进深度神经网络的短期电力负荷预测[J]. 科技创新与应用, 2022, 12(25):12-15.
|
|
Zhang Yang. Short-term load prediction based on improved depth neural network[J]. Technology Innovation and Application, 2022, 12(25):12-15.
|
[10] |
赵齐昌. 基于XGBoost-LSTM组合模型的电力负荷预测研究[D]. 汉中: 陕西理工大学, 2022:9-43.
|
|
Zhao Qichang. Research on power load forecasting based on XGBoost-LSTM combined model[D]. Hanzhong: Shaanxi University of Technology, 2022:9-43.
|
[11] |
吕雪松, 潘冬, 王凯, 等. 基于马尔科夫修正的灰色时间序列电力负荷预测方法[J]. 自动化技术与应用, 2022, 41(3):132-136,176.
|
|
Lü Xuesong, Pan Dong, Wang Kai, et al. Markov modified grey-time series electric load forecasting method[J]. Techniques of Automation and Applications, 2022, 41(3):132-136,176.
|
[12] |
邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2021:33-60.
|
|
Qiu Xipeng. Neural networks and deep learning[M]. Beijing: China Machine Press, 2021:33-60.
|
[13] |
韩雨恒. 基于LSTM神经网络的轨道预报算法研究[J]. 科学技术创新, 2022, 26(21):88-91.
|
|
Han Yuheng. Research on orbit prediction algorithm based on LSTM neural network[J]. Scientific and Technological Innovation, 2022, 26(21):88-91.
|
[14] |
刘海峰, 王艳如. 基于LSTM的短期电力负荷预测算法研究[J]. 现代信息科技, 2021, 5(23):40-42,47.
|
|
Liu Haifeng, Wang Yanru. Research on short-term power load forecasting algorithm based on LSTM[J]. Modern Information Technology, 2021, 5(23):40-42,47.
|
[15] |
Guo S J.Missing values imputation of sequential, US10592368B2[P].[2020-03-17].
|
[16] |
白洪涛, 栾雪, 何丽莉, 等. 基于缺失森林的医疗大数据缺失值插补[J]. 吉林大学学报(信息科学版), 2022, 40(4):616-620.
|
|
Bai Hongtao, Luan Xue, He Lili, et al. Missing value interpolation for medical big data based on missing forest[J]. Journal of Jilin University(Information Science Edition), 2022, 40(4):616-620.
|
[17] |
黄小佳. 基于机器学习的风能资源评估与风速预测的模型构建及研究[D]. 大连: 东北财经大学, 2021:12-30.
|
|
Huang Xiaojia. Model construction and research of wind energy resource assessment and wind speed prediction based on machine learning[D]. Dalian: Dongbei University of Finance and Economics, 2021:12-30.
|
[18] |
Zhou H X, Zhang Y J, Yang L F, et al. Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism[J]. IEEE Access, 2019, 7(9):78063-78074.
doi: 10.1109/ACCESS.2019.2923006
|