[1] |
Kaytaz U, Ucar S, Akgun B, et al. Distributed deep rein-forcement learning with wideband sensing for dynamic spectrum access[C]. Seoul:IEEE Wireless Communications and Networking Conference, 2020:1-6.
|
[2] |
Kassab R, Destounis A, Tsilimantos D, et al. Multi-agentdeep stochastic policy gradient for event based dynamic spectrum access[C]. London:IEEE the Thirty-first Annual International Symposium on Personal,Indoor and Mobile Radio Communications, 2020:1-6.
|
[3] |
Zhong C, Lu Z, Gursoy M C, et al. A deep actorcritic reinforcement learning framework for dynamic multi-channel access[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(4):1125-1139.
|
[4] |
Xu Y, Yu J, Buehrer R M. The application of deep reinforcement learning to distributed spectrum access indynamic heterogeneous environments with partial observations[J]. IEEE Transactions on Wireless Communications, 2020, 19(7):4494-4506.
|
[5] |
Chen S, Li Y. An overview of robust reinforcement learning[C]. Nanjing:IEEE International Conference on Networking,Sensing and Control, 2020:1-6.
|
[6] |
Zhu Z, Liu Y, Canova M. Energy management of hybrid electric vehicles via deep Q-networks[C]. Denver:American Control Conference, 2020:3077-3082.
|
[7] |
Bensalem M, Dizdarević J, Jukan A. DNN placement and inference in edge computing[C]. Opatija:The Fourty-third International Convention on Information,Communication and Electronic Technology, 2020:479-484.
|
[8] |
Kwadjo D T, Mbongue J M, Bobda C. Performance exploration on preimplemented CNN hardware accelerator on FPGA[C]. Maui:International Conference on Field-Programmable Technology, 2020:298-299.
|
[9] |
Liu W, Zeng Y. Motor imagery tasks EEG signals classification using ResNet with multi-time-frequency representation[C]. Xi'an:The Seventh International Conference on Intelligent Computing and Signal Processing, 2022:2026-2029.
|
[10] |
Routray N, Rout S K, Sahu B. Breast cancer prediction using deep learning technique RNN and GRU[C]. Gunupur:The Second International Conference on Computer Science,Engineering and Applications, 2022:1-5.
|
[11] |
余琼芳, 牛冬阳. 基于LSTM网络的矿山压力时空混合预测[J]. 电子科技, 2023, 36(2):67-72.
|
|
Yu Qiongfang, Niu Dongyang. Mixed prediction of mine pressure time and space based on LSTM network[J]. Electronic Science and Technology, 2023, 36(2):67-72.
|
[12] |
Ye X, Yu Y, Fu L. Multi-channel opportunistic access for heterogeneous networks based on deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2022, 21(2):794-807.
|
[13] |
Yu Y, Liew S C, Wang T. Non-uniform time-step deep Q-network for carrier-sense multiple access in hetero-geneous wireless networks[J]. IEEE Transactions on Mobile Computing, 2021, 20(9):2848-2861.
|
[14] |
谢羿. 基于北斗全球传输网络的天基测控任务研究[D]. 长沙: 国防科技大学, 2018:1-46.
|
|
Xie Yi. Research on space-based TT&C task based on Beidou global transmission network[D]. Changsha: National University of Defense Technology, 2018:1-46.
|
[15] |
刘凯. 基于NB-IOT的接入优化关键技术研究[D]. 厦门: 厦门大学, 2019:1-52.
|
|
Liu Kai. Research on key technologies of access optimization based on NB-IOT[D]. Xiamen: Xiamen University, 2019:1-52.
|
[16] |
党凯强. 基于LoRa和北斗短报文的森林防火探测终端设计[D]. 太原: 中北大学, 2021:1-63.
|
|
Dang Kaiqiang. Design of forest fire detection terminal based on LoRa and Beidou short message[D]. Taiyuan: North University of China, 2021:1-63.
|
[17] |
赵一蒙. 移动自组网多跳传输优化技术研究[D]. 北京: 中国电子科技集团公司电子bepaly手机下载院, 2022:1-62.
|
|
Zhao Yimeng. Research on multihop transmission optimization technology for mobile ad hoc network[D]. Beijing: China Academic of Electronics and Information Technology, 2022:1-62.
|
[18] |
Nishio T, Yonetani R. Client selection for federated learning with heterogeneous resources in mobile edge[C]. Shanghai:IEEE International Conference on Communications, 2019:1-7.
|