电子科技 ›› 2024, Vol. 37 ›› Issue (12): 67-72.doi: 10.16180/j.cnki.issn1007-7820.2024.12.010

• • 上一篇    下一篇

深度学习在肾结石影像诊断的应用进展

梁水芬1,2, 郭志勇1,2   

  1. 1.上海理工大学 健康科学与工程学院,上海 200093
    2.长海医院 肾内科,上海 200433
  • 收稿日期:2023-04-27 出版日期:2024-12-15 发布日期:2024-12-16
  • 作者简介:梁水芬(1998-),男,硕士研究生。研究方向:深度学习与泌尿系结石医工交叉应用。
    郭志勇(1966-),男,博士,教授。研究方向:慢性肾脏疾病早期防治、腹膜透析、梗阻性肾病及肾移植等。
  • 基金资助:
    国家自然科学基金(82070692)

Advancements of Deep Learning in Imaging Diagnosis of Kidney Stone

LIANG Shuifen1,2, GUO Zhiyong1,2   

  1. 1. School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
    2. Department of Nephrology,Changhai Hospital,Shanghai 200433,China
  • Received:2023-04-27 Online:2024-12-15 Published:2024-12-16
  • Supported by:
    National Natural Science Foundation of China(82070692)

摘要:

针对较多复杂而高维的结石图像数据和不同成像技术导致的不确定、破碎分散、异构的结石信息等问题,深度学习是一种高效的大数据处理工具,具有较好的特征提取和非线性识别能力,已成为提升肾结石管理水平的智能方案。深度学习应用于肾结石影像数据分析,可以针对不同类型结石数据的特征进行适应,并利用多变量综合评估结石,实现其精准量化,提高了诊断和评估的效率和准确度,协助医生制定更优的结石治疗方案。文中综述了近年来深度学习在肾结石影像的进展,介绍了各类深度学习算法,阐明其相对于传统方法以及机器学习算法的新颖性和优越性,并提出不足之处,旨在为后续的研究工作提供参考和方向。

关键词: 肾结石, 结石分析, 结石诊断, 结石分类, 计算机科学, 深度学习, 机器学习, 医疗大数据, 智能医疗

Abstract:

In view of the massive complex and high dimensional stone image data and the uncertain, fragmented and heterogeneous stone information caused by different imaging techniques, deep learning is an efficient big data processing tool with excellent feature extraction and nonlinear recognition capabilities, and has become an intelligent solution to improve the level of kidney stone management. The application of deep learning in kidney stone image data analysis can adapt to the characteristics of different types of stone data, and use multi-variable comprehensive assessment of stones to achieve accurate quantification, improve the efficiency and accuracy of diagnosis and evaluation, and assist doctors to develop better stone treatment plan. This study reviews the progress of deep learning in kidney stone imaging in recent years, focuses on various deep learning algorithms, illustrates their novelty and advantages over traditional methods and machine learning algorithms, and points out their shortcomings, aiming to provide reference and direction for subsequent research work.

Key words: kidney stones, stone analysis, stone diagnosis, stone classification, computer science, deep learning, machine learning, medical big data, intelligent healthcare

中图分类号: 

  • TP183