Electronic Science and Technology ›› 2020, Vol. 33 ›› Issue (11): 24-30.doi: 10.16180/j.cnki.issn1007-7820.2020.11.005
Previous Articles Next Articles
YANG Zhenyu,FU Yinghua,FU Dongxiang,WANG Yajing
Received:
2019-08-30
Online:
2020-11-15
Published:
2020-11-27
Supported by:
CLC Number:
YANG Zhenyu,FU Yinghua,FU Dongxiang,WANG Yajing. HEs Segmentation of Fundus Images by Multi-algorithm Fusion[J].Electronic Science and Technology, 2020, 33(11): 24-30.
Table 1
Results of this algorithm are compared with those of other algorithms"
方 法 | Kaggle | DIARETDB1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
基于像素的评价标准 | 基于图像的评价标准 | 基于像素的评价标准 | 基于图像的评价标准 | |||||||
SE/% | PPV/% | SE/% | SP/% | AC/% | SE/% | PPV/% | SE/% | SP/% | AC/% | |
文献[ | — | — | — | — | — | 84.6 | 94.4 | 97.3 | 90.0 | 93.7 |
文献[ | — | — | — | — | — | 92.4 | 87.1 | — | 81.3 | 87.7 |
文献[ | 93.2 | 79.3 | 97.1 | 80.0 | 95.0 | — | — | — | — | — |
本文算法 | 83.6 | 93.2 | 95.2 | 86.2 | 90.8 | 82.4 | 93.3 | 93.6 | 96.2 | 89.9 |
[1] | Cavan D, Makaroff L, Da Rocha Fernandes J, et al. The diabetic retinopathy barometer study: global perspectives on access to and experiences of diabetic retinopathy screening and treatment[J]. Diabetes Research and Clinical Practice, 2017,129(8):16-24. |
[2] | Shah A R, Gardner T W. Diabetic retinopathy: research to clinical practice[J]. Clinical Diabetes and Endocrinology, 2017,3(1):9-16. |
[3] | Jyoti P M, Samarendra D. An effective fovea detection and automatic assessment of diabetic maculopathy in color fundus images[J]. Computers in Biology and Medicine, 2016,74(9):30-44. |
[4] | Quellec, Gwenolé, Charrière, et al. Deep image mining for diabetic retinopathy screening[J]. Medical Image Analysis, 2017,39(2):178-193. |
[5] |
Murugeswari S, Sukanesh R. Investigations of severity level measurements for diabetic macular oedema using machine learning algorithms[J]. Irish Journal of Medical Science, 2017,186(4):929-938.
doi: 10.1007/s11845-017-1598-8 pmid: 28508191 |
[6] | Shilpa, Joshi, Karile P T. A review on exudates detection methods for diabetic retinopathy[J]. Biomedicine & Pharmacotherapy, 2018,9(7):1454-1460. |
[7] | Voets M, Mllersen K, Bongo L A. Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J/OL].(2018-08-30)[2019-07-10] http:∥arxiv.org/abs/1803.04337. |
[8] | Wisaeng K, Sa-Ngiamvibool W. Exudates detection using morphology mean shift algorithm in retinal images[J]. IEEE Access, 2019,1(3):11946-11958. |
[9] | Parham K, Leandro A, Passos J, et al. Exudate detection in fundus images using deeply-learnable features[J]. Computers in Biology and Medicine, 2019,104(7):62-69. |
[10] | Srivastava R, Duan L, Wong D W K, et al. Detecting retinal microaneurysms and hemorrhages with robustness to the presence of blood vessels[J] Computer Methods and Programs in Biomedicine, 2017,138(6):83-91. |
[11] | Prenta I P, Lon Ari S. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion[J]. Computer Methods and Programs in Biomedicine, 2016,137(3):281-292. |
[12] | Feng Z, Yang J, Yao L, et al. Deep retinal image segmentation: a FCN-based architecture with short and long skip connections for retinal image segmentation[C]. Guangzhou:International Conference on Neural Information Processing, 2017. |
[13] | Tan J H, Fujita H, Sivaprasad S, et al. Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network[J]. Information Sciences, 2017,42(6):66-76. |
[14] | 陈有信, 张碧磊, 张弘哲. 眼科人工智能技术的现状与问题[J]. 中华眼底病杂志, 2019,35(2):119-123. |
Chen Youxin, Zhang Bilei, Zhang Hongzhe. Insights and prospectives of ophthalmologic artificial intelligence technology[J]. Chinese Journal of Ocular Fundus Diseases, 2019,35(2):119-123. | |
[15] | Zheng R, Liu L. Detection of exudates in fundus photographs with imbalanced learning using conditional generative adversarial network[J]. Biomedical Optics Express, 2018,8(10):56-68. |
[16] |
Sanchez C I, Garcia M, Mayo A, et al. Retinal image analysis based on mixture models to detect hard exudates[J]. Medical Image Analysis, 2009,13(4):650-658.
pmid: 19539518 |
[17] | 段彦华, 周梦颖, 杨春兰, 等. 眼底图像中硬性渗出物检测算法[J]. 北京生物医学工程, 2018,37(1):1-8. |
Duan Yanhua, Zhou Mengying, Yang Chunlan, et al. Algorithm of hard exudates detection in fundus image[J]. Beijing Biomedical Engineering, 2018,37(1):1-8. | |
[18] | Carla P, Luís G, Manuel F. Exudate segmentation in fundus images using an ant colony optimization approach[J]. Information Sciences, 2015,29(6):14-24. |
[19] | João S, Adelino F, Gerardo F. An adaptive hybrid genetic algorithm for pavement management[J]. International Journal of Pavement Engineering, 2019,20(3):266-286. |
[20] | 徐海, 秦立峰. 遗传算法改进的KSW熵法计算黄瓜叶部角斑病密度[J]. 安徽农业科学, 2017,45(32):212-215. |
Xu Hai, Qing Lifeng. KSW entropy method improved by genetic algorithm for density of cucumber angular leaf spot calculation[J]. Journal of Anhui Agricultural Sciences, 2017,45(32):212-215. | |
[21] | 申小次. 基于遗传算法的二维熵图像分割方法的研究[D]. 北京:中国地质大学, 2008. |
Shen Xiaoci. Two-dimensional entropy image segmentation based on genetic algorithm[D]. Beijing:China University of Geosciences, 2008. | |
[22] | 金元郁, 张洪波, 冯宇. 基于遗传算法的二维双阈值Otsu图像分割算法[J]. 电子科技, 2009,22(11):35-39. |
Jin Yuanyu, Zhang Hongbo, Feng Yu. Two-Dimensional Two-Otsu threshold image segmentation based on the genetic algorithm[J]. Electronic Science and Technology, 2009,22(11):35-39. | |
[23] |
Elbalaoui A, Ouadid Y, Merbouha A. Segmentation of optic disc in fundus images using an active contour[J]. Journal of Electronic Commerce in Organizations, 2018,16(1):97-111.
doi: 10.4018/JECO |
[24] | 姜平. 眼底图像分割方法研究[D]. 长春:吉林大学, 2018. |
Jiang Ping. Study of retinal image segmentation method[D]. Changchun:Jilin University, 2018. | |
[25] | Saleh M D, Salih N D, Eswaran C, et al. Automated segmentation of optic disc in fundus images[C]. Kuala Lumpur: International Colloquium on Signal Processing & Its Applications, 2014. |
[26] | 王敏, 童水光, 陈玉辉, 等. 一种基于Hough变换的快速圆检测算法[J]. 机械工程与自动化, 2018(1):152-154. |
Wang Min, Tong Shuiguang, Chen Yuhui, et al. A quick circle detection algorithm based on Hough transformation[J]. Mechanical Engineering & Automation, 2018(1):152-154. | |
[27] | Diptoneel K, Nju S B. A new dynamic thresholding based technique for detection of hard exudates in digital retinal fundus image[C]. Noida:International Conference on Signal Processing and Integrated Networks(SPIN), 2014. |
[28] |
Osareh A, Shadgar B, Markham R. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images[J]. IEEE Transactions on Information Technology in Biomedicine, 2009,13(4):535-545.
doi: 10.1109/TITB.2008.2007493 pmid: 19586814 |
[29] | Xiao Z T, Li F, Geng L, et al. Hard exudates detection method based on background-estimation[C]. Tianjin:International Conference on Image and Graphics, 2015. |
[30] |
Fraz M M, Jahangir W, Zahid S, et al. Multiscale segmentation of exudates in retinal images using contextual cues and ensemble classification[J]. Biomedical Signal Processing and Control, 2017,35(3):50-62.
doi: 10.1016/j.bspc.2017.02.012 |
[1] | JIN Xiao,WU Fei,YAN Song,LU Wenxia,ZHANG Zhongyi. Fingerprint Location Method of Metro Station Based on GAWK-means [J]. Electronic Science and Technology, 2022, 35(2): 34-39. |
[2] | SHAO Zhihui,YANG Jian,YUAN Tianchen,WU Weijia. Sleeper Diseases Diagnosis Based on Permutation Entropy and Support Vector Machine [J]. Electronic Science and Technology, 2022, 35(2): 52-58. |
[3] | XIU Xiaobo,LI Boquan,ZHOU Feng. Optimization of Temperature Sensor Location Based on Genetic Algorithm [J]. Electronic Science and Technology, 2021, 34(9): 17-23. |
[4] | WANG Yang,WANG Yagang. Identification Method Based on Step Response and Genetic Algorithm to Optimize Higher-Order Plus Time-Delay Model [J]. Electronic Science and Technology, 2021, 34(9): 41-46. |
[5] | SI Mingming,CHEN Wei,HU Chunyan,YIN Zhong. Fundus Blood Vessel Image Segmentation Combining Resnet50 and U-Net [J]. Electronic Science and Technology, 2021, 34(8): 19-24. |
[6] | FANG Jinli,LÜ Yibin,WANG Yingzi,TANG Shengnan,WU Dean. A Novel Medical Image Segmentation Algorithm Based on Level Set [J]. Electronic Science and Technology, 2021, 34(2): 12-20. |
[7] | JU Zhiyong,ZHAI Chunyu,ZHANG Wenxin. Color Commodity Label Image Segmentation Method Based on SVM and Region Growth [J]. Electronic Science and Technology, 2021, 34(10): 69-74. |
[8] | DING Jiahui,ZHANG Zhaojun. Adaptive Genetic Algorithm Based on Individual Ordering [J]. Electronic Science and Technology, 2020, 33(3): 6-11. |
[9] | CHENG Junhua,ZENG Guohui,LIU Jin. Research on Complex Background Image Classification Method Based on Deep Learning [J]. Electronic Science and Technology, 2020, 33(12): 59-66. |
[10] | CHEN Hao,SHEN Jingfeng,ZHAO Cheng. The Application of UAV in Emergency Rescue and Disaster Relief [J]. Electronic Science and Technology, 2019, 32(9): 20-25. |
[11] | SUN Tengfei,JIANG Honghai. Research on Speed Measurement of Nozzle Material Liquid Droplet Based on Pattern Classification [J]. Electronic Science and Technology, 2019, 32(8): 33-37. |
[12] | CHEN Qiang,LIU Jin,YANG Haima,LIU Haishan,WEI Yu. Research on Reactive Power Optimization of Power Distribution Network Based on Improved Genetic Algorithm [J]. Electronic Science and Technology, 2019, 32(5): 11-16. |
[13] | LI Yapin,ZOU Dexuan,DUAN Na. Optimization of Nonlinear Model Based on GA-BFO Combination Algorithm [J]. Electronic Science and Technology, 2019, 32(5): 16-20. |
[14] | ZHU Wangchun,CHENG Hao,GAO Haiying. Adaptive Acoustic Emission Noise Elimination and Bearing Fault Diagnosis [J]. Electronic Science and Technology, 2019, 32(4): 16-20. |
[15] | LI Cunjin,SUN Hong. The Study of Improved Self-adaptive Genetic Algorithm in Association Rules [J]. Electronic Science and Technology, 2019, 32(12): 58-63. |