Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (8): 1-6.doi: 10.16180/j.cnki.issn1007-7820.2022.08.001
LIU Guohua1,LU Hongmin1,CHEN Chongchong1,LI Wanyu2,WAN Jianpeng1
Received:
2021-02-28
Online:
2022-08-15
Published:
2022-08-10
Supported by:
CLC Number:
LIU Guohua,LU Hongmin,CHEN Chongchong,LI Wanyu,WAN Jianpeng. Wideband Nonlinear Behavior Modeling of Receiver with Neural Network[J].Electronic Science and Technology, 2022, 35(8): 1-6.
[1] | 胡向峰, 张艳花. 接收机的非线性分析[J]. 太赫兹科学与电子信息学报, 2008, 6(6):440-443. |
Hu Xiangfeng, Zhang Yanhua. Nonlinear analysis of receiver[J]. Journal of Terahertz Science and Electronic Information Technology, 2008, 6(6):440-443. | |
[2] | Carvalho N B. Intermodulation distortion in microwave and wireless circuits[J]. Liver International Official Journal of the International Association for the Study of the Liver, 2003, 35(2):660-672. |
[3] | 李培红. 无源器件的三阶互调研究及测试[J]. 电子科技, 2015, 28(9):112-114. |
Li Peihong. Third-order intermodulation of passive components research and testing[J]. Electronic Science and Technology, 2015, 28(9):112. | |
[4] | 何军. 宽带射频功率放大器记忆效应的研究[D]. 成都: 电子科技大学, 2009. |
He Jun. Study on memory effect of wideband RF power amplifier[D]. Chengdu: University of Electronic Science and Technology of China, 2009. | |
[5] |
Xu G, Liu T, Ye Y, et al. Generalized two-box cascaded nonlinear behavioral model for radio frequency power amplifiers with strong memory effects[J]. IEEE Transactions on Microwave Theory & Techniques, 2014, 62(12):2888-2899.
doi: 10.1109/TMTT.2014.2365459 |
[6] | 刘太君, 陈豪, 苏日娜, 等. 基于神经网络的宽带功放动态非线性行为建模[J]. 微波学报, 2020, 36(1):131-136. |
Liu Taijun, Chen Hao, Su Rina, et al. Neural networks based nonlinear dynamic behavior modelling for broadband power amplifiers[J]. Journal of Microwaves, 2020, 36(1):131-136. | |
[7] | Sappal A S. Simplified memory polynomial modelling of power amplifier[C]. Vancouver: International Conference and Workshop on Computing and Communication, 2015. |
[8] |
Bai E W, Tempo R. Representation and identification of non-parametric nonlinear systems of short term memory and low degree of interaction[J]. Automatica, 2010, 46(10):1595-1603.
doi: 10.1016/j.automatica.2010.06.031 |
[9] | 李敏玥. 基于多项式的接收机非线性行为建模方法研究[D]. 西安: beoplay体育提现, 2020. |
Li Minyue. Research on receiver nonlinear behavioral modeling method based on polynomial[D]. Xi'an: Xidian University, 2020. | |
[10] | 赵一鹤, 邵杰, 程永亮. 基于编码—解码模型的D类功率放大器行为建模[J]. 电子科技, 2020, 33(2):20-24. |
Zhao Yihe, Shao Jie, Cheng Yongliang. Behavior modeling of class-D power amplifier based on encoder-decoder model[J]. Electronic Science and Technology, 2020, 33(2):20-24. | |
[11] | Liu T, Hui M, Zhang Y, et al. RF power amplifier modeling and linearization with augmented RBF neural networks[C]. Nanjing:IEEE International Workshop on Electromagnetics:Applications and Student Innovation Competition, 2016. |
[12] |
Zhai J, Zhou J, Zhang L, et al. The dynamic behavioral model of RF power amplifiers with the modified ANFIS[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(1):27-35.
doi: 10.1109/TMTT.2008.2009085 |
[13] |
Yan S, Zhang C, Zhang Q J. Recurrent neural network technique for behavioral modeling of power amplifier with memory effects[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2015, 25(4):289-298.
doi: 10.1002/mmce.20861 |
[14] |
Rawat M, Rawat K, Ghannouchi F M. Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(1):95-104.
doi: 10.1109/TMTT.2009.2036334 |
[15] | Zhao Z, Na W, Zhang Q. Multi-band behavioral modeling of power amplifier using carrier frequency-dependent time delay neural network model[C]. Seville:IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF,Microwave and Terahertz Applications, 2017. |
[16] | Tan H, Huang M. Numerical simulation of the nonlinear response of receiver mixer[C]. Suzhou:International Applied Computational Electromagnetics Society Symposium, 2017. |
[17] | Shi N, Guan Y, Liu X. Research on k-means clustering algorithm: An improved k-means clustering algorithm[C]. Ji'an:The Third International Symposium on Intelligent Information Technology and Security Informatics, 2010. |
[18] | 郭海如, 李志敏, 万兴, 等. 一种基于随机GA的提高BP网络泛化能力的方法[J]. 计算机技术与发展, 2014, 24(1):105-108. |
Guo Hairu, Li Zhimin, Wan Xing, et al. A method of improving generalization for BP network based on random GA[J]. Computer Technology and Development, 2014, 24(1):105-108. | |
[19] | 武鹏, 郭晓芸, 王海龙, 等. 基于卷积神经网络模型的情绪识别技术在语音质检中的应用[J]. 电子设计工程, 2021, 29(5):164-168. |
Wu Peng, Guo Xiaoyun, Wang Hailong, et al. Emotion recognition technique based on convolutional neural network model application in voice quality inspection[J]. Electronic Design Engineering, 2021, 29(5):164-168. |
[1] | DENG Yuan,SHI Yiping,JIANG Yueying,ZHU Yamei,LIU Jin. Infant Expression Recognition Algorithm Based on MobileNetV2 and LBP Feature Fusion [J]. Electronic Science and Technology, 2022, 35(8): 47-52. |
[2] | TONG Xiaosen,YANG Jinxian. Drilling Tool Acceleration Denoising Based on GRNN Network Adaptive Filtering [J]. Electronic Science and Technology, 2022, 35(7): 46-51. |
[3] | SUN Kang,XUAN Xuyang,LIU Penghui,ZHAO Laijun,LONG Jie. Partial Discharge Pattern Recognition of Cable Based on CNN-DCGAN under Small Data [J]. Electronic Science and Technology, 2022, 35(7): 7-13. |
[4] | ZHANG Chongchong,HUANG Yayu. A GA-BP Neural Network for Predicting the Structure of Leaf Tobacco [J]. Electronic Science and Technology, 2022, 35(6): 35-42. |
[5] | SHEN Ningjing,YUAN Jian. Crowd Counting Algorithm Based on Residual Dense Connection and Attention Fusion [J]. Electronic Science and Technology, 2022, 35(6): 6-12. |
[6] | WANG Peiyu,MA Lixin. Research on Permanent Magnet Synchronous Motor Servo System Based on Fuzzy Neural Network [J]. Electronic Science and Technology, 2022, 35(6): 83-88. |
[7] | DING Huihui,SHAO Tingting,QIAO Xi. Research on Azimuth Error Compensation Based on BP Neural Network at Small-Angle Deviation [J]. Electronic Science and Technology, 2022, 35(5): 33-37. |
[8] | CHENG Shunda,CHENG Ying,SUN Shijiang. Tumor Intelligent Auxiliary Diagnosis Method Based on Machine Learning [J]. Electronic Science and Technology, 2022, 35(5): 56-59. |
[9] | Jianpeng WAN,Hongmin LU,Guohua LIU,Min LI. EMI Margin Assessment of Vehicular Communication System [J]. Electronic Science and Technology, 2022, 35(4): 1-7. |
[10] | Chaowei LIN,Feifei LI,Qiu CHEN. Globaland Local Scene Representation Method Based on Deep Convolutional Features [J]. Electronic Science and Technology, 2022, 35(4): 20-27. |
[11] | Li HUA,Jian YANG,Tianchen YUAN,Ruigang SONG. Track Disease Diagnosis Method Based on VMD and BP Neural Network [J]. Electronic Science and Technology, 2022, 35(4): 40-46. |
[12] | Jinxian YANG,Yuxin HAN,Pengwei LIU. Drift Processing of Gyro While Drilling Based on Synaptic Plasticity Pulsed Neural Network [J]. Electronic Science and Technology, 2022, 35(4): 60-66. |
[13] | Lingyu JI,Yongbin GAO,Chenglu ZHAO,Xianhua TANG,Kaicheng XU,Jiacheng XU. CTA Segmentation Algorithm of Abdominal Artery Based on 3D Fully Convolutional Network [J]. Electronic Science and Technology, 2022, 35(3): 38-44. |
[14] | Yanmei YANG,Zongmao CHENG. Prediction of PM2.5 Based on External Influences and Time-Series Factors [J]. Electronic Science and Technology, 2022, 35(3): 51-57. |
[15] | Hui LI,Hao JING,Kanghua YAN,Lianghao XU. Speech Enhancement Method Based on Convolutional Recurrent Network and Non-Local Module [J]. Electronic Science and Technology, 2022, 35(3): 8-15. |
|