Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (4): 44-51.doi: 10.16180/j.cnki.issn1007-7820.2023.04.006
Previous Articles Next Articles
CUI Zhuodong,CHEN Wei,YIN Zhong
Received:
2021-10-22
Online:
2023-04-15
Published:
2023-04-21
Supported by:
CLC Number:
CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network[J].Electronic Science and Technology, 2023, 36(4): 44-51.
Table 1.
Comparison of experimental results"
模型 | 特征 补充 | 改进 BiFPN | ASF | AP/% | FPS | 权重文件 大小/MB |
---|---|---|---|---|---|---|
SSD | 78.20 | 20.6 | 100.3 | |||
YOLOv3 | 80.40 | 29.1 | 235.0 | |||
Faster-RCNN(VGG) | 77.10 | 3.5 | 522.0 | |||
Faster-RCNN(ResNet) | 78.30 | 7.2 | 108.0 | |||
CenterNet | 81.80 | 18.1 | 125.0 | |||
RetinaNet | 82.40 | 21.8 | 140.0 | |||
EfficientDet | 81.19 | 25.3 | 15.0 | |||
EfficientDet | √ | 82.08 | 25.2 | 15.1 | ||
EfficientDet | √ | √ | 82.32 | 25.0 | 15.8 | |
EfficientDet | √ | √ | √ | 83.03 | 22.4 | 16.3 |
Table 2.
Test results on PASCAL VOC 2007 data set"
模型 | 主干网络 | AP/% | FPS | 权重文件 大小/MB |
---|---|---|---|---|
RefineDet[ | VGG | 81.80 | 34.1 | 78.1 |
YOLOv3[ | DarkNet | 82.20 | 19.6 | 236.0 |
Faster-RCNN[ | ResNet | 76.40 | 2.4 | 109.0 |
SDD[ | VGG | 78.60 | 26.6 | 101.0 |
RFB512[ | VGG | 82.20 | 38.0 | 190.0 |
改进的YOLOv4[ | MobileNet | 82.50 | 29.7 | 20.6 |
EfficientDet | EfficientNet | 81.61 | 26.9 | 15.0 |
Ours | EfficientNet | 82.76 | 24.2 | 16.3 |
[1] | Du S, Shehata M, Badawy W. Hard hat detection in video sequences based on face features, motion and color information[C]. Shanghai: Proceedings of the Third International Conference on Computer Research and Development, 2011. |
[2] |
Fang Q, Li H, Luo X C. Detection non-hardhat-use by a deep learning method from far field surveillance videos[J]. Automation in Construction, 2018, 85(1):1-9.
doi: 10.1016/j.autcon.2017.09.018 |
[3] | Ren S Q, He K M, Girshick R, et al. Faster R-CNN:To-wards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28(2):91-99. |
[4] |
方明, 孙腾腾, 邵桢. 基于改进YOLOv2的快速安全帽佩戴检测情况检测[J]. 光学精密工程, 2019, 27(5):1196-1205.
doi: 10.3788/OPE. |
Fang Ming, Sun Tengteng, Shao Zhen. Fast helmet-wearing condition detection based on improved YOLOv2[J]. Optics and Precision Engineering, 2019, 27(5):1196-1205.
doi: 10.3788/OPE. |
|
[5] | Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[6] | Howard A G, Zhu M L, Chen B, et al. MobileNets:Efficient convolutional neural networks for mobile vision applications[C]. Honolulu: Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2017. |
[7] | 徐守坤, 王雅如, 顾玉宛, 等. 基于改进Faster RCNN的安全帽佩戴检测研究[J]. 计算机应用研究, 2020, 37(3):901-905. |
Xu Shoukun, Wang Yaru, Gu Yuwan, et al. Safety helmet wearing detection study based on improved Faster RCNN[J]. Application Research of Computers, 2020, 37(3):901-905. | |
[8] | 仝泽友, 冯仕民, 侯晓晴, 等. 基于安全帽佩戴检测的矿山人员违规行为研究[J]. 电子科技, 2019, 32(9):26-31. |
Tong Zeyou, Feng Shimin, Hou Xiaoqing, et al. Recognition of underground miners’ rule-violated behavior based on safety helmet detection[J]. Electronic Science and Technology[J]. 2019, 32(9):26-31. | |
[9] | Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(12):1097-1105. |
[10] | Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition[C]. Banff: Proceedings of the International Conference on Learning Representations, 2014. |
[11] | Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[C]. Amsterdam: Proceedings of the European Conference on Computer Vision, 2016. |
[12] | Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Washington,D.C.:Proce-edings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[13] | Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017. |
[14] | Bochkovskly A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[C]. Seattle: Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2020. |
[15] | Tan M, Pang R, Le Q V. EfficientDet:Scalable and effi-cient object detection[C]. Washington,D.C.:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. |
[16] | Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]. Washington,D.C.:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. |
[17] | Guo C X, Fan B, Zhang Q, et al. AugFPN:Impeoving multi-scale feature learning for object detection[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. |
[18] | Liu S T, Huang D, Wang Y H. Learning spatial fusion for single-shot object detection[J]. Computing Research Repository, 2019,1-10. |
[19] | 王平, 江雨泽, 赵光辉. 目标检测的多尺度定位提升算法[J]. beoplay体育提现学报, 2021, 48(3):85-90. |
Wang Ping, Jiang Yuze, Zhao Guanghui. Object detectionbased on the multiscale location enhancement network[J]. Journal of Xidian University, 2021, 48(3):85-90. | |
[20] | 袁帅, 王康, 单义, 等. 基于多分支并行空洞卷积的多尺度目标检测算法[J]. 计算机辅助设计与图形学学报, 2021, 33(6):864-872. |
Yuan Shuai, Wang Kang, Shan Yi, et al. Multi-scale obj-ect detection method based on multi-branch parallel dilated convolution[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(6):864-872. | |
[21] | Liu S T, Huang D. Receptive filed block net for accurate and fast object detection[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018. |
[22] | 刘晋, 邓洪敏, 徐泽林, 等. 面向目标识别的轻量化混合卷积神经网络[J]. 计算机应用, 2021, 41(10):1-8 |
Liu Jin, Deng Hongmin, Xu Zelin, et al. Lightweight hybrid convolutional neural network for object recognition[J]. Journal of Computer Applications, 2021, 41(10):1-8. |
[1] | SUN Hong,ZHANG Yuxiang. Super-Resolution Image Reconstruction Algorithm Based on Multi-Feature Gated Feedback Residual Network [J]. Electronic Science and Technology, 2023, 36(4): 65-70. |
[2] | TANG Zheng,ZHANG Huilin,MA Lixin,LIU Jinzhi,WANG Hao. Identification of Foreign Objects on Transmission Lines Using Lightweight Network Algorithm [J]. Electronic Science and Technology, 2023, 36(4): 71-77. |
[3] | BAI Yingqi,PALIDAN·Tuerxun . A Scientific Literature Recommendation Method Based on Multi-Task Learning [J]. Electronic Science and Technology, 2023, 36(4): 59-64. |
[4] | LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan. A Review of Research on EEG Signal Preprocessing Methods [J]. Electronic Science and Technology, 2023, 36(4): 36-43. |
[5] | LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network [J]. Electronic Science and Technology, 2023, 36(3): 81-86. |
[6] | HUANG Yuan,WEI Yunbing,TONG Dongbing,WANG Weigao. Short-Term Photovoltaic Power Prediction Based on VMD and Improved TCN [J]. Electronic Science and Technology, 2023, 36(3): 42-49. |
[7] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
[8] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[9] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[10] | HUANG Yajing,LIAO Aihua,YU Miao,LI Xiaolong,HU Dingyu. An Improved CNN Method for Bearing Acoustic Fault Diagnosis [J]. Electronic Science and Technology, 2023, 36(1): 75-80. |
[11] | WU Tong,YU Lianzhi. The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network [J]. Electronic Science and Technology, 2023, 36(1): 38-43. |
[12] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
[13] | DENG Yuan,SHI Yiping,JIANG Yueying,ZHU Yamei,LIU Jin. Infant Expression Recognition Algorithm Based on MobileNetV2 and LBP Feature Fusion [J]. Electronic Science and Technology, 2022, 35(8): 47-52. |
[14] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[15] | ZHAO Xuan,ZHOU Fan,YU Hancheng. Improved YOLOv3 Model Based on New Feature Extraction and Fusion Module [J]. Electronic Science and Technology, 2022, 35(7): 40-45. |
|