[1] |
夏令儒, 孙首群. 多无人机协同任务规划[J]. 电子科技, 2018, 31(1):4-8.
|
|
Xia Lingru, Sun Shouqun. Planning route for UAV cooperative combat[J]. Electronic Science and Technology, 2018, 31(1):4-8.
|
[2] |
韩晓微, 韩震, 岳高峰, 等. 救灾无人机的优化A*航迹规划算法[J]. 计算机工程与应用, 2021, 57(6):232-238.
doi: 10.3778/j.issn.1002-8331.1912-0304
|
|
Han Xiaowei, Han Zhen, Yue Gaofeng, et al. Path planning algorithm of disaster relief UAV based on optimized A*[J]. Computer Engineering and Applications, 2021, 57(6):232-238.
doi: 10.3778/j.issn.1002-8331.1912-0304
|
[3] |
陈昊, 沈景凤, 赵程. 无人机在抢险救灾中的优化应用[J]. 电子科技, 2019, 32(9):20-25.
|
|
Chen Hao, Shen Jinfeng, Zhao Cheng. The application of UAV in emergency rescue and disaster relief[J]. Electronic Science and Technology, 2019, 32(9):20-25.
|
[4] |
岳秀, 张伟. 基于智能算法的无人机航迹规划[J]. 电子科技, 2019, 32(2):9-13.
|
|
Yue Xiu, Zhang Wei. UAV path planning based on intelligent algorithm[J]. Electronic Science and Technology, 2019, 32(2):9-13.
|
[5] |
徐宏飞. 面向智慧避障的物流无人机航迹规划研究[D]. 北京: 北京交通大学, 2019:1-7.
|
|
Xu Hongfei. The study about the track planning of express unmanned aerial vehicle(UAV) for intelligent obstacle avoidance[D]. Beijing: Beijing Jiaotong University, 2019:1-7.
|
[6] |
贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术, 2021, 43(1):99-111.
|
|
Jia Gaowei, Wang Jianfeng. Research review of UAV swarm mission planning method[J]. Systems Engineering and Electronics, 2021, 43(1):99-111.
|
[7] |
韩尧, 李少华. 基于改进人工势场法的无人机航迹规划[J]. 系统工程与电子技术, 2021, 43(11):3305-3311.
|
|
Han Yao, Li Shaohua. UAV path planning based on improved artificial potential field[J]. Systems Engineering and Electronics, 2021, 43(11):3305-3311.
|
[8] |
刘永建, 曾国辉, 黄勃, 等. 改进蚁群算法的机器人路径规划研究[J]. 电子科技, 2020, 33(1):13-18.
|
|
Liu Yongjian, Zeng Guohui, Huang Bo, et al. Research on robot path planning based on improved ant colony algorithm[J]. Electronic Science and Technology, 2020, 33(1): 13-18.
|
[9] |
张利民, 李茜, 李伟勋. 导弹定向定时航迹规划的改进PSO方法研究[J]. 航天控制, 2021, 39(4):36-42.
|
|
Zhang Limin, Li Qian, Li Weixun. Improved PSO method research of trajectory planning with impact angle and time constraints of missile[J]. Aerospace Control, 2021, 39(4):36-42.
|
[10] |
Devaurs D, Simeon T, Cortes J. Optimal path planning in complex cost spaces with sampling-based algorithms[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(2):415-424.
doi: 10.1109/TASE.2015.2487881
|
[11] |
Hao B, Yan Z. Recovery path planning for an agricultural mobile robot by Dubins-RRT* algorithm[J]. International Journal of Robotics & Automation, 2018, 33(2):202-207.
|
[12] |
谭建豪, 肖友伦, 刘力铭, 等. 改进PRM算法的无人机航迹规划[J]. 传感器与微系统, 2020, 39(1):38-41.
|
|
Tan Jianhao, Xiao Youlun, Liu Liming, et al. Improved PRM algorithm for path planning of UAV[J]. Transducer and Microsystem Technologies, 2020, 39(1):38-41.
|
[13] |
张超省, 王健, 张林, 等. 面向复杂障碍场的多智能体系统集群避障模型[J]. 兵工学报, 2021, 42(1):141-150.
doi: 10.3969/j.issn.1000-1093.2021.01.016
|
|
Zhang Chaosheng, Wang Jian, Zhang Lin, et al. A multi-agent system flocking model with obstacle avoidance in complex obstacle field[J]. Acta Armamentarii, 2021, 42(1):141-150.
doi: 10.3969/j.issn.1000-1093.2021.01.016
|
[14] |
顾伟, 汤俊, 白亮, 等. 面向时间协同的多无人机队形变换最优效率模型[J]. 航空学报, 2019, 40(6):192-200.
|
|
Gu Wei, Tang Jun, Bai Liang, et al. Time synergistic optimal efficiency model for formation transformation of multiple UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):192-200.
|
[15] |
李樾, 韩维, 陈清阳, 等. 基于快速扩展随机树算法的多无人机编队重构方法研究[J]. 西北工业大学学报, 2019, 37(3):601-611.
doi: 10.1051/jnwpu/20193730601
|
|
Li Yue, Han Wei, Chen Qingyang, et al. Research on formation reconfigureuration of UAVs based on RRT algorithm[J]. Journal of Northwestern Polytechnical University, 2019, 37(3):601-611.
doi: 10.1051/jnwpu/20193730601
|
[16] |
范林飞. 基于鸽群算法的多无人机协同编队[D]. 南京: 南京航空航天大学, 2020:21-41.
|
|
Fan Linfei. Cooperative formation of multi-UAVs based on pigeon algorithm[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020:21-41.
|
[17] |
任立敏, 王伟东, 杜志江, 等. 障碍环境下多移动机器人动态优化队形变换[J]. 机器人, 2013, 35(5):535-543.
doi: 10.3724/SP.J.1218.2013.00535
|
|
Ren Limin, Wang Weidong, Du Zhijiang, et al. Dynamic and optimized formation switching for multiple mobile robots in obstacle environments[J]. Robot, 2013, 35(5):535-543.
doi: 10.3724/SP.J.1218.2013.00535
|
[18] |
Gammell J D, Srinivasa S S, Barfot A. Informed-RRT: Optimal sampling-base path focused via direct sampling of an admissible ellipsoidal heuristic[C].Shanghai: International Conference on Intelligent Robots and Systems,IEEE, 2014:2997-3004.
|