Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (12): 9-16.doi: 10.16180/j.cnki.issn1007-7820.2024.12.002
Previous Articles Next Articles
LIAN Yue, LIU Deer
Received:
2023-04-08
Online:
2024-12-15
Published:
2024-12-16
Supported by:
CLC Number:
LIAN Yue, LIU Deer. Outdoor Navigation for Blind People Dynamic Obstacle Target RGB-D Visual Perception and Detection[J].Electronic Science and Technology, 2024, 37(12): 9-16.
Table 2.
Evaluation results of the COCO data set for each segmentation model"
分割算法 | AP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|
CondInst | 39.1 | 60.9 | 42.0 | 21.5 | 41.7 | 50.9 |
Mask-RCNN | 35.7 | 58.0 | 37.8 | 12.1 | 35.6 | 51.1 |
YOLACT | 29.8 | 48.5 | 31.2 | 9.9 | 31.3 | 47.7 |
SOLOv2 | 38.8 | 59.9 | 41.7 | 16.5 | 41.7 | 56.2 |
BlendMask | 39.6 | 61.6 | 42.6 | 22.4 | 42.2 | 51.4 |
BoxInst | 32.5 | 55.3 | 30.0 | 15.6 | 35.1 | 44.1 |
Table 3.
Evaluation results of each segmentation model with the created extended data set"
分割算法 | AP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|
CondInst | 28.801 | 60.706 | 25.806 | 0.278 | 9.425 | 36.700 |
SOLOv2 | 81.621 | 95.313 | 93.411 | 35.523 | 68.053 | 93.200 |
Mask-RCNN | 79.210 | 98.100 | 82.330 | 60.580 | 69.690 | 90.820 |
YOLACT | 49.960 | 85.820 | 48.650 | - | - | - |
BlendMask | 81.878 | 99.368 | 97.489 | 55.808 | 70.547 | 86.958 |
BoxInst | 24.150 | 80.245 | 5.668 | 5.270 | 16.564 | 28.219 |
Table 5.
Comparison of results under outlier rejection after conversion of single frame data to a point cloud"
实例 | 点云 总数 | 未处理 | 统计方 法剔除 | 半径方 法剔除 | 无效值 剔除 |
---|---|---|---|---|---|
1 | 6 524 | 131 | 127 | 128 | 131 |
2.809 m | 2.87 m | 2.871 m | 2.809 m | ||
2 | 329 220 | 6 585 | 6 418 | 6 585 | 6 585 |
0.809 m | 0.805 m | 0.809 m | 0.809 m | ||
3 | 39 985 | 800 | 733 | 800 | 800 |
0.942 m | 0.909 m | 0.942 m | 0.942 m | ||
4 | 143 | 3 | 2 | 0 | 3 |
2.948 m | 2.924 m | Nan | 2.948 m |
[1] | 蒲罗斌, 李明霞. 基于公共治理理论下的城市盲道治理研究[J]. 法制与社会, 2021, 30(4):145-146. |
Pu Luobin, Li Mingxia. Research on urban blind road governance based on public governance theory[J]. Legal System and Society, 2021, 30(4):145-146. | |
[2] | 陈传荣. 人口老龄化背景下城市无障碍设施问题分析及改善策略—以苏州城市盲道建设现状为例[J]. 美与时代(城市版), 2019, 8(5):65-66. |
Chen Chuanrong. Analysis of urban accessibility problems and improvement strategies in the context of population aging:The current situation of blind lane construction in Suzhou city as an example[J]. Beauty & Times, 2019, 8(5):65-66. | |
[3] | 胡雪峰, 夏菁, 王兴平, 等. 城市社区无障碍设施空间错配与优化策略研究—以南京市为例[J]. 残疾人研究, 2019, 9(3):63-70. |
Hu Xuefeng, Xia Jing, Wang Xingping, et al. Study on spatial mismatch and majorization of barrier-free facilities for urban community:A case study of Nanjing[J]. Disability Research, 2019, 9(3):63-70. | |
[4] | 王小伟. 基于RFID的盲道识别系统设计[D]. 成都: 成都理工大学,2009:1-61. |
Wang Xiaowei. Blindway recognition system design base on RFID[D]. Chengdu: Chengdu University of Technology,2009:1-61. | |
[5] | 吴悦, 高歌, 武梦竹, 等. 城市无障碍设施(盲道)应用状况的调查及分析[J]. 中国组织工程研究, 2020, 24(2):271-275. |
Wu Yue, Gao Ge, Wu Mengzhu, et al. Survey and analysis of the application situation of urban barrier-free facilities(tactile ground surface indicator)[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(2):271-275. | |
[6] | 王博. 北京市无障碍环境建设问题调研及对策研究[D]. 北京: 北京建筑大学,2017:1-52. |
Wang Bo. Research on problems and countermeasures of barrier-free environment construction in Beijing[D]. Beijing: Beijing University of Civil Engineering and Architecture,2017:1-52. | |
[7] | 朱祥成, 刘亚侠, 竹潇潇, 等. 基于障碍物检测功能的盲人辅助服装设计[J]. 毛纺科技, 2020, 48(11):63-67. |
Zhu Xiangcheng, Liu Yaxia, Zhu Xiaoxiao, et al. Design of auxiliary clothing for the blind based on obstacle detection[J]. Wool Textile Journal, 2020, 48(11):63-67. | |
[8] | 马建刚. 基于Haptic与空间认知的高精度盲人导航关键问题研究[D]. 乌鲁木齐: 新疆大学,2017:1-44. |
Ma Jiangang. Research on high-accuracy blind navigaton key issues based on Haptic and spatial cognition[D]. Urumqi: Xinjiang University,2017:1-44. | |
[9] | Mack K, Mcdonnell E, Jain D, et al. What do we mean by "Accessibility Research"?-A literature survey of accessibility papers in CHI and ASSETS from 1994 to 2019[C]. Yokohama: Proceedings of the CHI Conferenceon Human Factors in Computing Systems,2021:1-18. |
[10] | 张仲楠, 霍炜, 廉明, 等. 基于YOLOv5的快速双目立体视觉测距研究[J]. 青岛:青岛大学学报(工程技术版), 2021, 36(2):20-27. |
Zhang Zhongnan, Huo Wei, Lian Ming, et al. Research on fast binocular stereo vision ranging based on YOLOv5[J]. Journal of Qingdao University(Engineering & Technology Edition), 2021, 36(2):20-27. | |
[11] | Chen H, Sun K, Tian Z, et al. Blendmask:Top-down meets bottomup for instance segmentation[C]. Seattle: IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE Computer Society,2020:8570-8578. |
[12] | Tian Z, Shen C, Chen H, et al. FCOS:Fully Convolutional One-Stage object detection[C]. Seoul: IEEE/CVF International Conference on Computer Vision,2019:1-13. |
[13] | He K, Gkioxari G, Dollar P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42(2):386-397. |
[14] | Gupta S, Girshick R, Arbeláez P, et al. Learning rich fea-tures from RGB-D images for object detection and segmentation[C]. Zurich: Computer Vision,2014:345-360. |
[15] | Deng Z, Latecki L J. Amodal detection of 3D objects:Inferring 3D bounding boxes from 2D ones in RGB-depth images[C]. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition,2017:398-406. |
[16] | Hu W, Wang Q, Zhang L, et al. SiamMask:A framework for fast online object tracking and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3):3072-3089. |
[17] | 张志浩, 付东翔, 闫蕊. 一种基于图像处理技术的镜框尺寸测量系统[J]. 电子科技, 2022, 35(11):42-47. |
Zhang Zhihao, Fu Dongxiang, Yan Rui. A measuring system for frame size based on image processing technology[J]. Electronic Science and Technology, 2022, 35(11):42-47. | |
[18] | Bolya D, Zhou C, Xiao F, et al. YOLACT:Real-time instance segmentation[C]. Seoul: IEEE Transactions on Pattern Analysis and Machine Intelligence,2019:9156-9165. |
[19] | Tian Z, Shen C, Chen H. Conditional convolutions for instance segmentation[J]. Lecture Notes in Computer Science(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020(12346):282-298. |
[20] | Wang X, Zhang R, Kong T, et al. SOLOv2:Dynamic and fast instance segmentation[C]. Online: Advances in Neural Information Processing Systems,2020:17721-17732. |
[21] | Lee J, Yi J, Shin C, et al. BBAM:Bounding box attribution map for weakly supervised semantic and instance segmentation[C]. Nashville: IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:1-10. |
[22] | 李瑞. 条纹投影测量中无效点云剔除方法研究[D]. 合肥: 合肥工业大学,2021:1-60. |
Li Rui. Research on eliminating invalid point cloud in fringe projection measurement[D]. Hefei: Hefei University of Technoloy,2021:1-61. |
[1] | HE Zhiqiang, SUN Zhanquan. Swin-Transformer-Based Carotid Ultrasound Image Plaque Segmentation [J]. Electronic Science and Technology, 2024, 37(9): 48-56. |
[2] | HE Xing, HUANG Yongming, ZHU Yong. Pavement Pothole Detection Method Based on Improved YOLOv5 [J]. Electronic Science and Technology, 2024, 37(7): 53-59. |
[3] | YE Yuxin, JU Zhiyong, LAI Ying. Traffic Sign Detection Algorithm Incorporating Receptive Field Enhancement Module and Attention Mechanism [J]. Electronic Science and Technology, 2024, 37(6): 8-16. |
[4] | YUAN Ao, QI Jinpeng, JIA Can, XUE Yuxin, GUO Yangyang. A Classification Method of Time Series Pathological Data Segments Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(6): 84-91. |
[5] | ZHU Zihao, SONG Yan. Lightweight Capsule Network Fusing Attention and Capsule Pooling [J]. Electronic Science and Technology, 2024, 37(5): 1-8. |
[6] | XIA Rongcheng, LIU Deer. Vehicle Detection and Analysis in Urban Waterlogging Area Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(5): 18-24. |
[7] | GU Denghua, GU Chunhua. Instance Segmentation Based on Attention and Image Contour [J]. Electronic Science and Technology, 2024, 37(4): 62-68. |
[8] | MA Wenjie, ZHANG Xuanxiong. Research on Blind Roads and Obstacle Recognition Algorithm Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(3): 75-83. |
[9] | CUI Jingnan, HUANG Chunyan, LI Yanling. Improvement of YOLOv5s Algorithm for Steel Surface Defect Detection [J]. Electronic Science and Technology, 2024, 37(12): 48-55. |
[10] | LIANG Shuifen, GUO Zhiyong. Advancements of Deep Learning in Imaging Diagnosis of Kidney Stone [J]. Electronic Science and Technology, 2024, 37(12): 67-72. |
[11] | LI Yunpeng, XI Zhihong. Dynamic Face Recognition System Design Based on RetinaFace and FaceNet [J]. Electronic Science and Technology, 2024, 37(12): 79-86. |
[12] | XIA Qiangqiang, LI Feifei. Deep Learning with Noisy Labels Based on Co-Teaching [J]. Electronic Science and Technology, 2024, 37(11): 1-6. |
[13] | JU Ping, SONG Yan, ZHANG Yingjie, XU Yifu, SHAO Hang. Research on Agricultural Crop Diseases and Pests Classification Based on Masked Autoencoding [J]. Electronic Science and Technology, 2024, 37(10): 23-29. |
[14] | FENG Ting, YING Jie, YANG Haima, LI Fang. Detection of Cervical Lesions Based on Multi-Scale Features and Attention Mechanism [J]. Electronic Science and Technology, 2024, 37(10): 30-39. |
[15] | ZHANG Yang, LIU Jin. Character Enhancement Based on Named Entity Recognition for Industrial Equipment Faults [J]. Electronic Science and Technology, 2024, 37(10): 48-54. |
|