[1] |
刘杰, 孙立民. 深度学习人脸识别技术在考勤系统的应用[J]. 智能计算机与应用, 2020, 10(2):17-22.
|
|
Liu Jie, Sun Limin. Application of deep learning face recognition technology in attendance system[J]. Intelligent Computer and Application, 2020, 10(2):17-22.
|
[2] |
徐恬恬, 席志红. 基于改进GD-HASLR算法的遮挡人脸识别[J]. 电子科技, 2023, 36(6)72-79.
|
|
Xu Tiantian, Xi Zhihong. Face recognition with occlusion based on improved GD-HASLR algorithm[J]. Electronic Science and Technology, 2023, 36(6)72-79.
|
[3] |
张坤. 基于深度学习的非约束条件下人脸识别算法研究[D]. 杭州: 中国计量大学,2018:6-8.
|
|
Zhang Kun. Research on face recognition under unconstrained conditions based on deep learning[D]. Hangzhou: China Jiliang University,2018:6-8.
|
[4] |
倪凯丽. 基于深度学习的不同光照下的人脸识别研究[D]. 北京: 北京邮电大学,2020:12-16.
|
|
Ni Kaili. Research on face recognition under different illumination based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications,2020:12-16.
|
[5] |
王灵珍, 赖惠成. 基于多任务级联CNN与中心损失的人脸识别[J]. 计算机仿真, 2020, 37(8):398-403.
|
|
Wamg Lingzhen, Lai Huicheng. Face recognition based on multi-task cascade convolution CNN and center loss function[J]. Computer Simulation, 2020, 37(8):398-403.
|
[6] |
Khan A, Sohail A, Zahoora U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(1):5455-5516.
|
[7] |
吴东东. 基于深度学习的自然场景下多人脸检测与识别[D]. 太原: 山西大学, 2020:24-28.
|
|
Wu Dongdong. Face detection and recognition in natural scenes based on deep learning[D]. Taiyuan: Shanxi University,2020:24-28.
|
[8] |
Deng J, Guo J, Ververas E, et al. Retinaface:Single-shot multi-level face localisation in the wild[C]Online: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:5203-5212.
|
[9] |
Wang Y, Wang C, Zhang H, et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery[J]. Remote Sensing, 2019, 11(5):531-532.
|
[10] |
Kirillov A, Girshick R, He K, et al. Panoptic feature pyramid networks[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:6399-6408.
|
[11] |
Zhang J, Wu X, Hoi S C H, et al. Feature agglomeration networks for single stage face detection[J]. Neurocomputing, 2020, 380(10):180-189.
|
[12] |
Huang X, Ge Z, Jie Z, et al. Nms by representative region: Towards crowded pedestrian detection by proposal pairing[C]. Online: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:10750-10759.
|
[13] |
William I, Rachmawanto E H, Santoso H A, et al. Face recognition using facenet(survey, performance test, and comparison)[C]. Long Beach: The Fourth International Conference on Informatics and Computing,IEEE,2019:1-6.
|
[14] |
葛道辉, 李洪升, 张亮, 等. 轻量级神经网络架构综述[J]. 软件学报, 2020, 31(9):2627-2653.
|
|
Ge Daohui, Li Hongsheng, Zhang Liang, et al. Survey of lightweight neural network[J]. Journal of Software, 2020, 31(9):2627-2653.
|
[15] |
Deng W, Zheng L, Sun Y, et al. Rethinking triplet loss for domain adaptation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(1):29-37.
|
[16] |
Han K, Wang Y, Tian Q, et al. Ghostnet:More features from cheap operations[C]. Online: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1580-1589.
|
[17] |
Liu S, Huang D, Wang Y. Adaptive NMS:Refining pedestrian detection in a crowd[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:6459-6468.
|
[18] |
Salekin M S, Jelodar A B, Kushol R. Cooking state recognition from images using inception architecture[C]. Long Beach: International Conference on Robotics, Electrical and Signal Processing Techniques,2019: 163-168.
|
[19] |
Yao T, Zhang Q, Wu X, et al. Image recognition method of defective button battery base on improved MobileNetv1[C]. Beijing: Image and Graphics Technologies and Applications(The Fifteenth Chinese Conference), 2020:313-324.
|
[20] |
Pang T, Xu K, Dong Y, et al. Rethinking softmax cross-entropy loss for adversarial robustness[J]. International Conference on Learning Representations, 2019: 5(2):16-35.
|