Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (6): 43-47.doi: 10.16180/j.cnki.issn1007-7820.2022.06.007
Previous Articles Next Articles
SHI Tian,XU Junjie,SUN Shuangyuan,YIN Mingjun,YANG Jun,YIN Zhiping
Received:
2021-01-22
Online:
2022-06-15
Published:
2022-06-20
Supported by:
CLC Number:
SHI Tian,XU Junjie,SUN Shuangyuan,YIN Mingjun,YANG Jun,YIN Zhiping. Electrically Tunable Terahertz Metamaterial Absorber Based on Liquid Crystal[J].Electronic Science and Technology, 2022, 35(6): 43-47.
[1] | Sarieddeen H, Saeed N, Al-Naffouri T Y, et al. Next generation terahertz communications: a rendezvous of sensing, imaging, and localization[J]. IEEE Communications Magazine, 2020, 58(5):69-75. |
[2] |
Feng H, An D, Tu H, et al. A passive video-rate terahertz human body imager with real-time calibration for security applications[J]. Applied Physics B, 2020, 126(8):97-105.
doi: 10.1007/s00340-020-07448-x |
[3] |
Vaks V L, Anfertev V A, Balakirev V Y, et al. High resolution terahertz spectroscopy for analytical applications[J]. Physics-Uspekhi, 2020, 63(7):708-720.
doi: 10.3367/UFNe.2019.07.038613 |
[4] |
Wang C, Qin J, Xu W, et al. Terahertz imaging applications in agriculture and food engineering: A review[J]. Transactions of the ASABE, 2018, 61(2):411-424.
doi: 10.13031/trans.12201 |
[5] | Hangyo M. Development and future prospects of terahertz technology[J]. Japanese Journal of Applied Physics, 2015, 54(12):1-16. |
[6] |
Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792.
pmid: 15297655 |
[7] | Banerjee B, Nagy P B. An introduction to metamaterials and waves in composites[J]. Materials Today, 2011, 14(9):1665-1666. |
[8] |
Imani M F, Gollub J N, Yurduseven O, et al. Review of metasurface antennas for computational microwave imaging[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3):1860-1875.
doi: 10.1109/TAP.2020.2968795 |
[9] |
Kim Y, Kim D, Lee S H, et al. Single-layer metamaterial bolometer for sensitive detection of low-power terahertz waves at room temperature[J]. Optics Express, 2020, 28(12):17143-17152.
doi: 10.1364/OE.387783 |
[10] |
Ou H, Lu F, Xu Z, et al. Terahertz metamaterial with multiple resonances for biosensing application[J]. Nanomaterials, 2020, 10(6):1038-1049.
doi: 10.3390/nano10061038 |
[11] | Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):74021-74024. |
[12] | Hu F, Qian Y, Li Z, et al. Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array[J]. Journal of Optics, 2013, 15(5):5101-5107. |
[13] | 王连胜, 夏冬艳, 付全红, 等. 基于电流变液的宽带可调超材料吸波体设计[J]. 电子科技, 2020, 33(12):32-37. |
Wang Liansheng, Xia Dongyan, Fu Quanhong, et al. The design of wideband tunable metamaterial absorber based on electrorheological fluid[J]. Electronic Science and Technology, 2020, 33(12):32-37. | |
[14] |
Zhao X, Wang Y, Schalch J, et al. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers[J]. ACS Photonics, 2019, 6(4):830-837.
doi: 10.1021/acsphotonics.8b01644 |
[15] | 王磊, 肖芮文, 葛士军, 等. 太赫兹液晶材料与器件研究进展[J]. 物理学报, 2019, 68(8):7-20. |
Wang Lei, Xiao Ruiwen, Ge Shijun, et al. Research progress of terahertz liquid crystal materials and devices[J]. Acta Physica Sinica, 2019, 68(8):7-20. | |
[16] |
Wang J, Tian H, Wang Y, et al. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial[J]. Optics Express, 2018, 26(5):5769-5776.
doi: 10.1364/OE.26.005769 |
[17] | Isiĉ G, Vasiĉ B, Zografopoulos C, et al. Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals[J]. Physical Review Applied, 2015, 3(6):40071-40078. |
[18] | Costa F, Monorchio A, Manara G. Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model[J]. IEEE Antennas and Propagation Magazine, 2012, 54(4):35-48. |
[19] | 聂猛猛, 刘岩. 基于电磁超材料无线电能传输系统设计与优化[J]. 电子设计工程, 2022, 30(2):133-137. |
Nie Mengmeng, Liu Yan. Design and optimization of radio power transmission system based on lectromagneticmetamaterials[J]. Electronic Design Engineering, 2022, 30(2):133-137. |
[1] | CHEN Zhenghong,JIANG Yuanzhen,HOU Jianqiang. A Large-Scale Antenna Array Radome Decoupling Technology Based on Electromagnetic Metamaterials [J]. Electronic Science and Technology, 2022, 35(1): 6-11. |
[2] | WANG Liansheng,XIA Dongyan,FU Quanhong,DING Xueyong,WANG Yuan. The Design of Wideband Tunable Metamaterial Absorber Based on Electrorheological Fluid [J]. Electronic Science and Technology, 2020, 33(12): 32-37. |
[3] | LIU Lele,LIU Lan,SHI Yu,WU Zhilin,HU Yue,WEN Jie. Design and Implementation of an Electrically Tunable Filter with High Suppression [J]. Electronic Science and Technology, 2019, 32(1): 42-46. |
[4] | GE Yi 1,YE Mingxu 2,YANG Jun 2,DENG Guangcheng 2,YIN Zhiping 2,SANG Lei 2. Techniques for the Measurement of Permittivity of Liquid Crystals at Millimeter-wave to Terahertz Frequencies [J]. , 2017, 30(4): 123-. |
[5] | PANG Xiaofeng. Application of Polymer Dispersed Liquid Crystal [J]. , 2016, 29(7): 94-. |
[6] | WANG Chao,SUN Guoqiang. A New Driving Power Supply System Based on S3C2440 [J]. , 2016, 29(5): 8-. |
[7] | LIU Mingxin,FANG Mengxu,TANG Bin,FENG Wenying. Performance Analysis of Varactors with Back-to-back Topology [J]. , 2016, 29(3): 137-. |
[8] | OUYANG Weizhong,ZHOU Yonggang,LI Bonan,XIE Qianqian. A High Gain Vivaldi Ultra Wideband Antenna [J]. , 2015, 28(8): 15-. |
[9] | SU Shihu. Effect of Temperature on the Warpage and Deformation of Different Thickness Light Guide Plate [J]. , 2014, 27(7): 127-. |
[10] | BI Haiying,SHI Wen. Design of Simple Intelligent Vehicle System Based on AT89S52 [J]. , 2014, 27(5): 80-. |
[11] | WANG Yongzhong. Design of an Electronic Remind Device [J]. , 2013, 26(5): 98-. |
[12] | HUANG Bin-Ke, ZHANG Shuang. Analysis of Shielding Characteristics of Metal Slab at THz Frequencies Using FDTD Method [J]. , 2013, 26(2): 129-. |
[13] | LI Jianguo. Principle and Design of the 80 V Surge Absorber [J]. , 2011, 24(6): 122-. |
[14] | LI Tian-Hui, WEI Shan, YU Qian, LIN Zan-Yang, HONG Xin-Gen, LU Chao. Design of High-Temperature Thermometer Based on Pt100 Using Look-up Table [J]. , 2011, 24(10): 52-. |
[15] | CHEN Yu. Development of the Anti-glimpse Door Mirror [J]. , 2010, 23(9): 8-. |
|