Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (6): 6-12.doi: 10.16180/j.cnki.issn1007-7820.2022.06.002
Previous Articles Next Articles
SHEN Ningjing,YUAN Jian
Received:
2021-01-28
Online:
2022-06-15
Published:
2022-06-20
Supported by:
CLC Number:
SHEN Ningjing,YUAN Jian. Crowd Counting Algorithm Based on Residual Dense Connection and Attention Fusion[J].Electronic Science and Technology, 2022, 35(6): 6-12.
[1] | Leibe B, Seemann E, Schiele B. Pedestrian detection in crowded scenes[C]. San Diego: IEEE Computer Society Conference on Computer Vision & Pattern Recognition. IEEE, 2005. |
[2] | 夏菁菁, 高琳, 范勇, 等. 基于骨架特征的人数统计[J]. 计算机应用, 2014, 34(2):585-588. |
Xia Jingjing, Gao Lin, Fan Yong, et al. People counting based on skeleton feature[J]. Journal of Computer Applications, 2014, 34(2):585-588. | |
[3] | 杨林, 吕学强, 张鑫, 等. 像素特征与粘连人体分割结合的人数统计方法[J]. 计算机工程与设计, 2019, 40(2):455-461. |
Yang Lin, Lü Xueqiang, Zhang Xin, et al. People countring method combining pilxel feature and conglutination human body segmentation[J]. Computer Engineering and Design, 2019, 40(2):455-461. | |
[4] | 禹明娟, 张英烈, 陈临强. 医院监控场景下的人群密度估计方法[J]. 电子科技, 2016, 29(3):75-78. |
Yu Mingjuan, Zhang Yinglie, Chen Linqiang. Crowd density estimation method for hospital surveillance[J]. Electronic Science and Technology, 2016, 29(3):75-78. | |
[5] | 范龙飞, 姜子政, 李海丰, 等. 基于局部密度分类的人数统计算法[J]. 控制工程, 2019, 26(6):1015-1020. |
Fan Longfei, Jiang Zizheng, Li Haifeng, et al. Population statistics algorithm based on localdensity classification[J]. Control engineering of China, 2019, 26(6):1015-1020. | |
[6] | Boominathan L, Kruthivent S S S, Babu R V. Crowdnet: A deep convolutional network for dense crowd counting[C]. Amsterdam: Proceedings of the Twenty-fourth ACM International Conference on Multimedia, 2016. |
[7] | Zhang Y, Zhou D, Chen S, et al. Single-image crowd counting via multi-column convolutional neural network[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[8] | Sindagi V A, Patel V M. Cnn-based cascaded multit-ask learning of high-level prior and density estimation for crowd counting[C]. Lecce: Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance, 2017. |
[9] | Sam D B, Surya S, Babu R V. Switching convolutional neural network for crowd counting[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[10] | Zeng L, Xu X, Cai B, et al. Multi-scale convolutional neural networks for crowd counting[C]. Beijing: Proceedings of the IEEE International Conference on Image Processing, 2017. |
[11] | Liu M, Jiang J, Guo Z Q, et al. Crowd counting with fully convolutional neural network[C]. Athens: The Twenty-fifth IEEE International Conference on Image Processing, 2018. |
[12] | Li Y, Zhang X, Chen D. Csrnet: Dilated convolutional neural networks for understanding the highly congested scenes[C]. Salt Lake: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. |
[13] | Wang S, Wang H, Li Q. Multi-Dilation network for crowd counting[C]. Beijing: Proceedings of the ACM Multimedia Asia, 2019. |
[14] | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014(11):332-345. |
[15] | Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[16] |
Zhao B, Wu X, Feng J, et al. Diversified visual attention networks for fine-grained object classification[J]. IEEE Transactions on Multimedia, 2017, 19(6):1245-1256.
doi: 10.1109/TMM.2017.2648498 |
[17] | Park J, Woo S, Lee J Y, et al. BAM:bottleneck attention module[C]. Newcastle: Proceedings of the British Machine Vision Conference, 2018. |
[18] | Chen L C, Yang Y, Wang J, et al. Attention to scale:Scale-aware semantic image segmentation[C]. Las Vegas: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, 2016. |
[19] | 郑萌. 基于改进注意力机制模型的智能英语翻译方法研究[J]. 电子科技, 2020, 33(11):84-87. |
Zhang Meng. Research on intelligentEnglish translation based on improved attention mechanism model[J]. Electronic Science and Technology, 2020, 33(11):84-87. | |
[20] | Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Salt Lake: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, 2018. |
[21] | Chen K, Loy C C, Gong S, et al. Feature mining for localised crowd counting[C]. London: Proceedings of the British Machine Vision Conference, 2012. |
[22] | Xiong F, Shi X, Yeung D Y. Spatiotemporal modeling for crowd counting in videos[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017. |
[23] | Idrees H, Tayyab M, Athrey K, et al. Composition loss for counting, density map estimation and localization in dense crowds[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018. |
[24] |
Sheng B, Shen C, Lin G, et al. Crowd counting via weighted VLAD on a dense attribute feature map[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 28(8):1788-1797.
doi: 10.1109/TCSVT.2016.2637379 |
[1] | CHEN Jinhong,CHEN Wei,YIN Zhong. Semantic Segmentation of Streetscape Based on Improved ExfuseNet [J]. Electronic Science and Technology, 2022, 35(6): 28-34. |
[2] | Chaowei LIN,Feifei LI,Qiu CHEN. Globaland Local Scene Representation Method Based on Deep Convolutional Features [J]. Electronic Science and Technology, 2022, 35(4): 20-27. |
[3] | Li HUA,Jian YANG,Tianchen YUAN,Ruigang SONG. Track Disease Diagnosis Method Based on VMD and BP Neural Network [J]. Electronic Science and Technology, 2022, 35(4): 40-46. |
[4] | Lingyu JI,Yongbin GAO,Chenglu ZHAO,Xianhua TANG,Kaicheng XU,Jiacheng XU. CTA Segmentation Algorithm of Abdominal Artery Based on 3D Fully Convolutional Network [J]. Electronic Science and Technology, 2022, 35(3): 38-44. |
[5] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[6] | ZHAO Chong,CHI Mengmeng,CHU Cong,ZHANG Peng. Research on Motion Simulation and Visual Recognition Algorithm of Guide Dog Walking Mechanism [J]. Electronic Science and Technology, 2021, 34(9): 66-72. |
[7] | ZHAN Yinwei,ZHU Baiwan,YANG Zhuo. Research and Application of Vehicle Face Recognition Algorithm [J]. Electronic Science and Technology, 2021, 34(8): 1-7. |
[8] | LIAO Luming,ZHANG Wei. Batch Mixed Training Traffic Sign Recognition Based on Improved VGG16 Network [J]. Electronic Science and Technology, 2021, 34(8): 8-13. |
[9] | MA Lixin,DOU Chenfei,SONG Chencan,YANG Tianxiao. Insulator Nondestructive Testing Based on Feature Fusion CNN [J]. Electronic Science and Technology, 2021, 34(7): 26-30. |
[10] | GU Wei,LI Feifei,CHEN Qiu. Pedestrian Detection Algorithm Based on Multiple Feature Fusion [J]. Electronic Science and Technology, 2021, 34(5): 29-34. |
[11] | ZHANG Shisen,SUN Xiankun,YIN Ling,LI Shixi. Design of Text Title Generation Prototype System Based on Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 35-41. |
[12] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
[13] | ZHANG Can,CHEN Wei,YIN Zhong. Semantic Segmentation of Cervical Cell Image Based on Weak Supervision [J]. Electronic Science and Technology, 2021, 34(12): 68-74. |
[14] | ZHANG Ying,LIU Zilong,WAN Wei. UAV Vehicle Target Detection Based on Faster R-CNN [J]. Electronic Science and Technology, 2021, 34(11): 11-20. |
[15] | LI Cheng,LIU Hao,JIANG Xifeng,WU Junfa,HAN Wengang,GAO Jianguo. Intelligent Diagnosis Algorithm of Generator Stator and Rotor Based on VGG Network [J]. Electronic Science and Technology, 2021, 34(11): 62-66. |
|