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Abstract
Nondominated Neighbor Immune Algorithm (NNIA) is proposed for multiobjective
optimization by using a novel nondominated neighbor-based selection technique, an
immune inspired operator, two heuristic search operators, and elitism. The unique
selection technique of NNIA only selects minority isolated nondominated individ-
uals in the population. The selected individuals are then cloned proportionally to
their crowding-distance values before heuristic search. By using the nondominated
neighbor-based selection and proportional cloning, NNIA pays more attention to the
less-crowded regions of the current trade-off front. We compare NNIA with NSGA-II,
SPEA2, PESA-II, and MISA in solving five DTLZ problems, five ZDT problems, and
three low-dimensional problems. The statistical analysis based on three performance
metrics including the coverage of two sets, the convergence metric, and the spacing,
show that the unique selection method is effective, and NNIA is an effective algorithm
for solving multiobjective optimization problems. The empirical study on NNIA’s scal-
ability with respect to the number of objectives shows that the new algorithm scales
well along the number of objectives.

Keywords
Multiobjective optimization, evolutionary algorithm, artificial immune system, crowding-
distance, Pareto-optimal solution.

1 Introduction

Many real-word problems have several objectives to be optimized at the same time.
The simultaneous optimization of multiple objectives is different from single objective
optimization in that there is no unique solution to multiobjective optimization prob-
lems (MOPs), but instead, we aim at finding all of the good trade-off solutions which

C© 2008 by the Massachusetts Institute of Technology Evolutionary Computation 16(2): 225–255



M. Gong, L. Jiao, H. Du, and L. Bo

must be considered equivalent in the absence of information concerning the relevance
of each objective relative to the others. Evolutionary algorithms (EAs) have been recog-
nized to be well suited to multiobjective optimization since early in their development
because they deal simultaneously with a set of possible solutions. The ability to handle
complex problems, involving features such as discontinuities, multimodality, disjoint
feasible spaces, and noisy function evaluations, reinforces the potential effectiveness of
EAs in multiobjective optimization (Fonseca and Fleming, 1995). The vector evaluated
genetic algorithm (Schaffer, 1984) was probably the first multiobjective optimization EA
(MOEA) to search for multiple Pareto-optimal solutions concurrently in a single run.
Since the mid 1990s, the amount of literature about MOEAs increased greatly and many
MOEAs were proposed one after another. The Niched Pareto Genetic Algorithm (Horn
and Nafpliotis, 1993) and the Nondominated Sorting Genetic Algorithm (Srinivas and
Deb, 1993) were representative of them. These MOEAs were characterized by the use of
selection mechanisms based on Pareto ranking and fitness sharing to maintain diversity
(Coello Coello, 2003). In the past few years, some MOEAs using the elitism strategy
were presented, such as the Strength Pareto Evolutionary Algorithm (SPEA; Zitzler and
Thiele, 1999), the Pareto Archived Evolution Strategy (PAES; Knowles and Corne, 2000),
the Pareto Envelope based Selection Algorithm (PESA; Corne et al., 2000), the Multi-
Objective Messy Genetic Algorithm (MOMGA; Van Veldhuizen and Lamont, 2000), the
revised version of PESA with region-based selection (PESA-II; Corne et al., 2001), the Mi-
cro Genetic Algorithm (microGA; Coello Coello and Pulido, 2001), the improved version
of NSGA (NSGA-II) with a more efficient nondominated sorting method, elitism, and a
crowded comparison operator without specifying any additional parameters for diver-
sity maintaining (Deb, Pratap, et al., 2002), and the improved version of SPEA (SPEA2)
with a revised fitness assignment strategy, a nearest neighbor density estimation tech-
nique, and an enhanced archive truncation method (Zitzler et al., 2002). These MOEAs
can be considered to be different MOEAs in the sense of their different ways to do
selection (or fitness assignment) and population maintenance in multiobjective spaces.
Coello Coello maintains an evolutionary multiobjective optimization repository at
(www.lania.mx/˜ccoello/EMOO) in which almost all of these algorithms can be found.

The human immune system (HIS) is a highly evolved, parallel, and distributed
adaptive system. The information processing abilities of the HIS provide important
aspects in the field of computation. This emerging field is referred to as the Artificial Im-
mune Systems (AIS) (Tarakanov and Dasgupta, 2000). In recent years, AIS have received
a significant amount of interest from researchers and industrial sponsors. Applications
of AIS include such areas as machine learning, fault diagnosis, computer security, and
optimization (Nicosia et al., 2004; Jacob et al., 2005). Recently, Coello Coello proposed an
artificial immune system algorithm MISA (Coello Coello and Cortes, 2002, 2005) based
on the clonal selection principle (Burnet, 1959) to solve multiobjective optimization
problems. We also proposed an immune algorithm IDCMA (Jiao et al., 2005) which is
the groundwork for this paper. Both the two algorithms adopted binary representation.
Freschi and Repetto (2005) proposed a Vector Artificial Immune System (VAIS) based
on the multimodal optimization algorithm opt-aiNet (de Castro and Timmis, 2002).

In this paper, we propose a novel multiobjective algorithm, the Nondominated
Neighbor Immune Algorithm (NNIA). In NNIA, the fitness value of each nondomi-
nated individual is assigned as the average distance of two nondominated individuals
on either side of this individual along each of the objectives, namely, the crowding-
distance defined by Deb, Pratap, et al. (2002). According to the fitness values, only
partial nondominated individuals with greater crowding-distance values are selected
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to do proportional cloning, recombination, and hypermutation. So in a single genera-
tion, NNIA pays more attention to the less-crowded regions (referred to in Section 2.3)
in the current trade-off front.

The remainder of this paper is organized as follows: Section 2 describes related
background including multiobjective optimization, immune system inspired optimiza-
tion algorithms, and three terms used in this paper. Section 3 describes the main loop
of NNIA. The fitness assignment, population evolution, and computational complexity
of NNIA are also analyzed in Section 3. In Section 4, five DTLZ problems (Deb, Thiele,
et al., 2002), five ZDT problems (Zitzler et al., 2000), and three low-dimensional prob-
lems are used to evaluate NNIA’s effectiveness by comparing with NSGA-II, SPEA2,
PESA-II, and MISA, based on three performance metrics, the coverage of two sets (Zit-
zler and Thiele, 1998), the convergence metric (Deb and Jain, 2002), and the spacing
(Schott, 1995). The comparison of NNIA with and without recombination, and NNIA’s
scalability along the number of objectives, will also be investigated. In Section 5, con-
cluding remarks are presented.

2 Related Background

2.1 Multiobjective Optimization

Multiobjective Optimization (Deb, 2001; Coello Coello et al., 2002) seeks to optimize a
vector of functions,

F(x) = (
f1(x), f2(x), . . . , fk(x)

)T (1)

subject to x = (x1, x2, . . . , xm) ∈ �, where x is the decision vector, and � is the feasible
region in decision space.

Considering a maximization problem for each objective, it is said that a decision
vector xA ∈ � dominates another vector xB ∈ � (written as xA � xB) if and only if

∀i = 1, 2, . . . , k fi(xA) ≥ fi(xB) ∧ ∃j = 1, 2, . . . , k fi(xA) > fi(xB) (2)

We say that a vector of decision variables x∗ ∈ � is a Pareto-optimal solution or
nondominated solution if there does not exist another x ∈ � such that x � x∗.

Then the Pareto-optimal set is defined as

P∗ 	= {x∗ ∈ �|¬∃x ∈ �, x � x∗} (3)

So the Pareto-optimal set is the set of all Pareto-optimal solutions. The correspond-
ing image of the Pareto-optimal set under the objective function space

PF∗ 	= {
F(x∗) = (

f1(x∗), f2(x∗), . . . , fk(x∗)
)T | x∗ ∈ P∗} (4)

is called the Pareto-optimal front. The aim of an MOEA is to find a set of Pareto-optimal
solutions approximating the true Pareto-optimal front.

2.2 Immune System Inspired Optimization Algorithms

The immune system’s ability to adapt its B-cells to new types of antigens is powered by
processes known as clonal selection and affinity maturation by hypermutation (Garrett,
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2005). The majority of immune system inspired optimization algorithms are based on
the applications of the clonal selection and hypermutation (Hart and Timmis, 2005). The
first immune optimization algorithm may be Fukuda et al. (1993), which included an
abstraction of clonal selection to solve computational problems. But the clonal selection
algorithm for optimization has been popularized mainly by de Castro and Von Zuben’s
CLONALG (de Castro and Von Zuben, 2002). CLONALG selects the fittest antibodies to
clone proportionally to their antigenic affinities. The hypermutation operator performs
an affinity maturation process inversely proportional to the fitness values generating
the matured clone population. After computing the antigenic affinity of the matured
clone population, CLONALG randomly creates new antibodies to replace the lowest
fitness antibodies in the current population and to retain the best antibodies to recycle.
de Castro and Timmis (2002) proposed an artificial immune network called opt-aiNet
for multimodal optimization. In opt-aiNet, antibodies are part of an immune network
and the decision about the individual which will be cloned, suppressed, or maintained
depends on the interaction established by the immune network. Garrett (2004) has pre-
sented an attempt to remove all the parameters from the clonal selection algorithm.
This method, which is called ACS for short, attempts to self-evolve various parameters
during a single run. Cutello and Nicosia proposed an immune algorithm for optimiza-
tion called opt-IA (Cutello et al., 2004; Cutello, Narzisi, Nicosia, et al., 2005). Opt-IA
uses three immune operators, cloning, hypermutation, and aging. In the hypermuta-
tion operator, the number of mutations is determined by mutation potential. The aging
operator eliminates old individuals to avoid premature convergence. Opt-IA also uses
a standard evolutionary operator, the (µ + λ)-selection operator. As far as multiobjec-
tive optimization is concerned, MISA (Coello Coello and Cortes, 2002, 2005) may be
the first attempt to solve general multiobjective optimization problems using artificial
immune systems. MISA encodes the decision variables of the problem to be solved by
binary strings, clones the Pareto-optimal and feasible solutions, and applies two types
of mutation to the clones and other individuals, respectively. More recently, Freschi and
Repetto (2005) proposed a Vector Artificial Immune System (VAIS) for solving multi-
objective optimization problems based on the opt-aiNet. VAIS adopted the flowchart
of opt-aiNet and the fitness assignment method in SPEA2 with some simplification
that for nondominated individuals the fitness is the strength defined in SPEA2 and for
dominated individuals the fitness is the number of individuals which dominate them.
Cutello, Narzisi, and Nicosia (2005) modified the (1+1)-PAES using the two immune
inspired operators, cloning and hypermutation, and applied the improved PAES to
solving the protein structure prediction problem. In order to compare these algorithms
clearly, we summarize their key techniques in Table 1.

In Jiao et al. (2005), we proposed an immune algorithm for multiobjective optimiza-
tion called the Immune Dominance Clonal Multiobjective Algorithm (IDCMA). IDCMA
assigned the fitness values of current dominated individuals as the values of a custom
distance measure, termed as Ab-Ab affinity, between the dominated individuals and
one of the nondominated individuals found so far. According to the values of Ab-Ab
affinity, all dominated individuals (antibodies) are divided into two kinds, subdominant
antibodies and cryptic antibodies. A heuristic search only applies to the subdominant
antibodies while the cryptic antibodies are redundant and have no function during
search, but they can become subdominant (active) antibodies in the subsequent evolu-
tion. But recently, we found that the IDCMA, which adopts binary string representation
and the Ab-Ab affinity based selection on dominated individuals, had difficulties in con-
verging to the true Pareto-optimal front and obtaining the well-distributed solutions for
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Table 1: Main Optimization Algorithms Inspired by Immune System
Algorithm Fitness assignment Key components Applications
CLONALG The objective function to be Elitist selection, cloning, Single objective

optimized mutation, death optimization
problems (SOPs)

Opt-aiNet The objective function to be Elitist selection, cloning, SOPs
optimized and the Euclidean mutation, network suppression,

distance between two individuals death
ACS The objective function to be Elitist selection, cloning, SOPs

optimized mutation, death
opt-IA The objective function to be (µ + λ)-selection, cloning, SOPs

optimized hypermutation,
hypermacromutation, aging

MISA The objective functions and the Elitist selection according to MOPs
Pareto dominance relationships, fitness and diversity, cloning,
the Euclidean distance between uniform mutation and

two individuals nonuniform mutation, archive
update

VAIS For Pareto-optimal individuals Cloning, mutation, clonal MOPs
the fitness is the strength defined selection, suppression, death,

in SPEA2 and for dominated archive update
individuals the fitness is the

number of individuals which
dominate them

I-PAES The Pareto dominance Cloning, mutation, clonal MOPs
relationships selection, (1+1)-selection,

archive update

some complicated problems, for example, the DTLZ problems (Deb, Thiele, et al., 2002).
So we modified the IDCMA by using real-coded representation, and a new selection
technique and population maintenance strategy, the NNIA, was proposed accordingly.

2.3 Summary of Related Terms

In this paper, we follow the nomenclature of immunology and define the terms as
follows.

2.3.1 Antibody and Antibody Population

For the MOP {
max F(x) = (

f1(x), f2(x), . . . , fk(x)
)T

subject to x ∈ �
(5)

where x = (x1, x2, . . . , xm), � is the feasible region, and k ≥ 2, an antibody b = (b1, b2, . . . ,

bl) is the coding of variable x, denoted by b = e(x), and x is called the decoding of anti-
body b, expressed as x = e−1(b). In this study, we adopt real-valued presentation, that
is, b = e(x) = x, so l = m, and b ∈ �. An antibody population

B = {b1, b2, . . . , bn}, bi ∈ �, 1 ≤ i ≤ n (6)
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is an n-dimensional group of antibody b, where the positive integer n is the size of
antibody population B.

2.3.2 Dominant Antibody

For the MOP in equation (5), the antibody bi is a dominant antibody in the antibody
population B = {b1, b2, . . . , bn}, if and only if there is no antibody bj ∈ B that satisfies

∀p = 1, 2, . . . , k fp

(
e−1(bj )

) ≥ fp

(
e−1(bi)

) ∧
∃q = 1, 2, . . . , k fq

(
e−1(bj )

)
> fq

(
e−1(bi)

)
(7)

So the dominant antibodies are the nondominated individuals in population B.
In this paper, we denote the set of dominant antibodies as D, and denote dominant
antibodies as d with different suffixes.

In order to explain the concepts of antibody, antibody population, and dominant
antibody, we give a simple example as follows. For the MOP in equation (5), if a vector
x1 = (0.5, 0.2, 4, 5) belongs to the feasible region �, then x1 is a candidate solution of
the MOP, and the corresponding antibody is denoted by b1 = (0.5, 0.2, 4, 5). If b1 =
(0.5, 0.2, 4, 5), b2 = (0.7, 0.6, 4, 7), and b3 = (0.2, 0.6, 6, 1) are three antibodies, then the
set B = {b1, b2, b3} is an antibody population with size 3. In the antibody population
B = {b1, b2, b3}, if both b2 and b3 do not dominate b1, then b1 is a dominant antibody
in the antibody population B.

2.3.3 Crowding-Distance

In our multiobjective algorithm, the dominant antibodies in D are ranked according
to how much they contribute to the diversity of objective function values. This can be
measured by the crowding-distance (Deb, Pratap, et al., 2002). For the MOP in equation
(5), the crowding-distance of a dominant antibody d ∈ D is given by

ζ (d, D)
	=

k∑
i=1

ζi(d, D)
f max

i − f min
i

(8)

where f max
i and f min

i are the maximum and minimum value of the ith objective and

ζi(d, D) =
{

∞, if fi(d) = min
{
fi(d

′
)|d′ ∈ D

}
or fi(d) = max

{
fi(d

′
)|d′ ∈ D

}
min

{
fi(d

′
) − fi(d

′′
)|d′

, d
′′ ∈ D : fi(d

′′
) < fi(d) < fi(d

′
)
}
, otherwise

(9)

Based on the crowding-distance ζ (d, D), we can estimate the density of dominant
antibodies surrounding d in the population D. If ζ (d, D) > ζ (d′, D), d, d′ ∈ D, then d is
a less-crowded individual, and d lies in a less-crowded region of the trade-off front, in
contrast to d′.

3 Description of the Algorithm

In this section, we describe a novel multiobjective optimization algorithm, the NNIA.
NNIA stores nondominated individuals found so far in an external population, called
the dominant population. Only partial less-crowded nondominated individuals, called
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active antibodies, are selected to do proportional cloning, recombination, and static
hypermutation (Cutello et al., 2004). Furthermore, the population storing clones is
called the clone population. The dominant population, active population, and clone
population at time t are represented by time-dependent variable matrices Dt , At , and
Ct , respectively. The main loop of NNIA is as follows.

Algorithm1: Nondominated Neighbor Immune Algorithm

Input: Gmax (maximum number of generations)
nD (maximum size of dominant population)
nA (maximum size of active population)
nC (size of clone population)

Output: DGmax+1 (final approximate Pareto-optimal set)

Step1: Initialization: Generate an initial antibody population B0 with size
nD. Create the initial D0 = φ, A0 = φ, and C0 = φ. Set t = 0.

Step2: Update Dominant Population: Identify dominant antibodies in Bt .
Copy all the dominant antibodies to form the temporary dominant pop-
ulation (denoted by DTt+1). If the size of DTt+1 is not greater than nD,
let Dt+1 = DTt+1. Otherwise, calculate the crowding-distance values
of all individuals in DTt+1, sort them in descending order of crowding-
distance, and choose the first nD individuals to form Dt+1.

Step3: Termination: If t ≥ Gmax is satisfied, export Dt+1 as the output of
the algorithm, Stop; Otherwise, t = t + 1.

Step4: Nondominated Neighbor−Based Selection: If the size of Dt is
not greater than nA, let At = Dt . Otherwise, calculate the crowding-
distance values of all individuals in Dt , sort them in descending order
of crowding-distance, and choose the first nA individuals to form At .

Step5: Proportional Cloning: Get the clone population Ct by applying pro-
portional cloning to At .

Step6: Recombination and Hypermutation: Perform recombination and
hypermutation on Ct and set C′

t to the resulting population.

Step7: Get the antibody population Bt by combining the C′
t and Dt ; go to Step2.

When the number of dominant antibodies is greater than the maximum limita-
tion and the size of dominant population is greater than the maximum size of active
population, both the reduction of dominant population and the selection of active anti-
bodies use the crowding-distance based truncation selection. The proportional cloning,
recombination, and hypermutation operators are described as follows.

3.1 Proportional Cloning

In immunology, cloning means asexual propagation so that a group of identical cells
can be descended from a single common ancestor, such as a bacterial colony whose
members arise from a single original cell as the result of mitosis. Following the works
summarized in Section 2.2, in this study, the proportional cloning TC on the active
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Figure 1: Illustration of the proportional cloning.

population A = {a1, a2, . . . , a|A|} is defined as

TC(a1 + a2 + · · · + a|A|) = TC(a1) + TC(a2) + · · · + TC(a|A|)

= {
a1

1 + a2
1 + · · · + aq1

1

} + {
a1

2 + a2
2 + · · · + aq2

2

}
+ · · · + {

a1
|A| + a2

|A| + · · · + aq|A|
|A|

}
(10)

where TC(ai) = {a1
i + a2

i + · · · + aqi

i }, aj

i = ai , i = 1, 2, . . . , |A|, j = 1, 2, . . . , qi . qi is a self-
adaptive parameter. The representation + is not the arithmetical operator, but only
separates the antibodies here. qi = 1 denotes that there is no cloning on antibody ai .

In this study, the individual with greater crowding-distance value is reproduced
more times, therefore, the individual with greater crowding-distance value has a larger
qi . Because the crowding-distance values of boundary solutions are positive infinity,
before computing the value of qi for each active antibody, we set the crowding-distance
values of the boundary individuals (in objective space) to be equal to the double values
of the maximum value of active antibodies except the boundary individuals. Then the
values of qi are calculated as

qi =
⌈

nC × ζ (ai , A)∑|A|
j=1 ζ (aj , A)

⌉
, (11)

where ζ (aj , A) denotes the crowding-distance value of the active antibodies aj , nC is an
expectant value of the size of the clone population. For example, suppose that there are
five antibodies in an active population for solving a bi-objective optimization problem
and the corresponding values of objective functions are (1.0, 0), (0.9, 0.2), (0.6, 0.4), (0.2,
0.7), and (0, 1.0). Therefore, the crowding-distance values of the five individuals are 2.4,
0.8, 1.2, 1.2, and 2.4, respectively. If nC = 40, then q1 = 40 × 2.4

2.4+0.8+1.2+1.2+2.4� = 12 and
q2 = 4, q3 = 6, q4 = 6, q5 = 12. Note that we use the ceil function here, therefore the clone
population size

∑|A|
j=1 qi is sometimes greater than the expectant value nC . However, the

subsequent update of the dominant population and nondominated neighbor-based
selection make sure the size of dominant population and the active population are not
greater than nD and nA, respectively.

Figure 1 illustrates the procedure of proportional cloning. All the antibodies in
subpopulation {a1

i , a2
i , . . . , aqi

i } are the result of the cloning on antibody ai , and have
the same property as ai . In fact, cloning on antibody ai is to make multiple identical
copies of ai . The aim is that the greater the crowding-distance value of an individual,
the more times the individual will be reproduced. So there exist more chances to search
in less-crowded regions of the trade-off front.
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3.2 Recombination and Hypermutation

If C = (c1, c2, c3, . . . , c|C|) is the resulting population from applying proportional cloning
to A = (a1, a2, a3, . . . , a|A|), then the recombination TR on the clone population C is
defined as

TR(c1 + c2 + · · · + c|C|)

= TR(c1) + TR(c2) + · · · + TR(c|C|)

= crossover(c1, A) + crossover(c2, A) + · · · + crossover(c|C|, A) (12)

where crossover(ci , A), i = 1, 2, . . . , |C|, denotes selecting equiprobably one individual
from the two offspring generated by a general crossover operator on clone ci and an
active antibody selected randomly from A.

In this study, we use static hypermutation operator (Cutello et al., 2004) on the clone
population after recombination. Cutello et al. (2004) designed three hypermutation
methods, namely, static hypermutation (the number of mutations is independent of the
fitness values), proportional hypermutation (the number of mutations is proportional to
the fitness value), and inversely proportional hypermutation (the number of mutations
is inversely proportional to the fitness value). We chose static hypermutation in our
algorithm for the following reasons:

(1) The hypermutation operator is implemented on the clone population after re-
combination. If we chose proportional hypermutation or inversely proportional
hypermutation, we have to calculate the fitness values for all the individuals of
the clone population. However, in other phases of NNIA, the dominated individ-
uals are not assigned fitness. Therefore, we have to define a fitness assignment
strategy to dominated individuals only for the hypermuation operator unless we
use a mutation operator independent from the fitness values.

(2) In order to reduce complexity, the number of fitness evaluations is as low as
possible. Suppose we were to define a fitness assignment strategy suitable for
proportional hypermutation or inversely proportional hypermutation, then we
would have to calculate the fitness values of all recombined clones before muta-
tion.

(3) The experimental study in Cutello et al. (2004) showed that inversely proportional
hypermutation did only slightly better than static and proportional hypermuta-
tion in solving the Trap function problems. But if the combination of multiple
operators was not considered, static hypermutation achieved the best results
among the three hypermutation operators in solving protein structure prediction
problems.

Following from the above reasons, we adopt the static hypermutation operator.
If R = (r1, r2, r3, . . . , r|R|) is the clone population after recombination, then the static
hypermutation operator TH on the population R is defined as

TH (r1 + r2 + · · · + r|R|) = TH (r1) + TH (r2) + · · · + TH (r|R|)

= mutate(r1) + mutate(r2) + · · · + mutate(r|R|) (13)
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Figure 2: Population evolution of NNIA.

where mutate(ri), i = 1, 2, . . . , |R|, denotes changing each element of the variable vector
ri by a general mutation operator with probability pm, so each individual in the clone
population R at each time step will undergo about m × pm mutations, where m is the
dimension of the variable vector.

3.3 Fitness Assignment and Population Evolution

It can be seen that NNIA uses some well-known techniques such as storing the nondom-
inated individuals previously found externally and reducing the number of nondom-
inated individuals stored without destroying the characteristics of the trade-off front.
Furthermore, NNIA adopts a novel selection technique. In NNIA, the dominant popu-
lation is set as an external population for elitism. The fitness values of the individuals
in the dominant population are assigned as the values of the crowding-distance, which
serves as an estimate of the perimeter of the cuboid formed by the nearest neighbors as
the vertices in objective space. The selection is therefore biased toward individuals with
a high isolation value. Only partial nondominated individuals (much less than non-
dominated individuals found so far) with high crowding-distance values are selected.
And cloning, recombination, and mutation only apply to the selected individuals (active
antibodies). So in a single generation, only less-crowded individuals perform heuristic
search in order to obtain more solutions in the less-crowded regions of the trade-off
fronts. In contrast to NSGA-II, the nondominated neighbor-based selection and the
proportional cloning makes the less-crowded individuals have more chances to do re-
combination and mutation. The population evolution in a single generation at time t is
shown in figure 2.

3.4 Computational Complexity

Analyzing NNIA’s computational complexity is revealing. In this section, we only
consider population size in computational complexity. Assuming that the maximum
size of the dominant population is nD, the maximum size of active population is nA,
and the clone population size is nC, then the time complexity of one generation for the
algorithm can be calculated as follows:
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The time complexity for identifying nondominated individuals in the population
is O((nD + nC)2); the worst time complexity for updating the dominant population
is O((nD + nC) log(nD + nC)); the worst time complexity for nondominated neighbor-
based selection is O(nD log(nD)); the time complexity for cloning is O(nC); and the time
complexity for recombination and mutation is O(nC). So the worst total time complexity
is

O((nD + nC)2) + O((nD + nC) log(nD + nC)) + O(nD log(nD)) + 2O(nC). (14)

According to the operational rules of the symbol O, the worst time complexity of
one generation for NNIA can be simplified as

O((nD + nC)2). (15)

So the cost of identifying the nondominated individuals in the population dom-
inates the computational complexity of NNIA. We will do some empirical study on
NNIA’s runtime complexity in Section 4.4.

4 Evaluation of NNIA’S Effectiveness

In this section, we compare PESA-II (Corne et al., 2001), NSGA-II (Deb, Pratap, et al.,
2002), SPEA2 (Zitzler et al., 2002), and MISA (Coello Coello and Cortes, 2005) with NNIA
in solving 13 well-known multiobjective function optimization problems including
three low-dimensional bi-objective problems, five ZDT problems (Zitzler et al., 2000),
and five DTLZ problems (Deb, Thiele, et al., 2002). The NNIA toolbox for Matlab 7.0
designed by the authors for solving the 13 problems and 20 other problems is available at
the first author’s homepage (http://see.xidian.edu.cn/iiip/mggong/Projects/NNIA.
htm). All the simulations were run on a personal computer with P-IV 3.2G CPU and 2G
RAM.

4.1 Experimental Setup

First, we describe the 13 test problems used in this study. The first three low-dimensional
bi-objective problems, named SCH, DEB, and KUR, were defined by Schaffer (1984),
Deb (1999), and Kursawe (1991), respectively. The next five ZDT problems were de-
veloped by Zitzler et al. (2000). The last five DTLZ problems were developed by Deb,
Thiele, et al. (2002). These MOPs have been cited in a number of significant studies in
this area. The first three MOPs are either simple or not scalable, where the number of
decision variables is no more than three. The five ZDT problems have 30 or 10 decision
variables. All the above eight problems have two objectives. The five DTLZ problems
can be scaled to any number of decision variables and objectives. The Pareto-optimal
fronts illustrated by a set of 200 uniform points are shown in figure 3. The Pareto-optimal
fronts of the five ZDT problems and the five DTLZ problems have been mathematically
defined (Zitzler et al., 2000; Deb, Thiele, et al., 2002). The three low-dimensional prob-
lems, SCH, DEB, and KUR, do not have mathematically defined Pareto-optimal fronts.
However, their approximate Pareto-optimal fronts have been illustrated (Deb, 1999;
Van Veldhuizen, 1999; Deb, 2001). Here we derive their approximate Pareto-optimal
fronts deterministically as follows,
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Figure 3: The Pareto-optimal fronts of the thirteen test problems illustrated by a set of
200 uniform points on them.

Algorithm2: The deterministic algorithm of approximating Pareto-optimal fronts

Step1: Generate finite discrete points uniformly distributed in the decision
space.

Step2: Calculate the objective function values of all the points.

Step3: Select all the nondominated individuls from these points as the ap-
proximate Pareto-optimal set, and the corresponding image under the
objective space constitutes the approximate Pareto-optimal front; Stop.

In order to approximate the Pareto-optimal fronts with sufficient resolution, here
we set the number of discrete points at 106. The running time for getting the approxi-
mate Pareto-optimal fronts of SCH, DEB, and KUR is about 18 hours using a personal
computer with P-IV 3.2G CPU and 2G RAM.

More details of the test problems can be found (Deb, 2001; Zitzler et al., 2000; Deb,
Thiele, et al., 2002). It is necessary to note that the performance of an MOEA in tackling
multiobjective constrained optimization problems may be largely dependent on the
constraint-handling technique used (Van Veldhuizen, 1999), so we did not include side-
constrained problems in this study. For the DTLZ problems, to be discussed in Section
4.2, we set the values of k and |xk| to be the values suggested by Deb et al. (2001,
2002), that is, k = 3 and |xk| = 5 for DTLZ1, k = 3 and |xk| = 10 for DTLZ2, DTLZ3, and
DTLZ4, k = 3 and |xk| = 20 for DTLZ6. In Section 4.4, we will study the scalability of
NNIA along the number of objectives based on two of the five DTLZ problems with k

increasing from 2 to 9.
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Zitzler et al. (2003) suggested that for a k-objective optimization problem, at least
k performances are needed to compare two or more solutions and an infinite number
of metrics to compare two or more sets of solutions. Deb and Jain (2002) suggested a
running performance metric for measuring the convergence to the reference set at each
generation of an MOEA run. As the reference Khare et al. (2003) describes, in Section
4.2, we apply this metric only to the final Pareto-optimal set obtained by an MOEA to
evaluate its performance. Zitzler et al. (2003) and Knowles et al. (2006) have suggested
that the power of unary quality indicators was restricted. So we choose a binary quality
metric, the coverage of two sets (Zitzler and Thiele, 1998). We also adopt the spacing
metric (Schott, 1995) to measure the diversity in the population. The three metrics are
summarized as follows.

Coverage of Two Sets: Let A, B be two approximate Pareto-optimal sets. The func-
tion IC maps the ordered pair (A, B) to the interval [0, 1]:

IC(A, B)
	= |{b ∈ B; ∃a ∈ A : a � b}|

|B| (16)

where � means dominate or equal (also called weakly dominate). The value IC (A, B) = 1
means that all decision vectors in B are weakly dominated by A. IC(A, B) = 0 implies
no decision vector in B is weakly dominated by A. Note that both directions always
have to be considered because IC(A, B) is not necessarily equal to 1 − IC(B, A) .

Convergence Metric: Let P∗ = (p1, p2, p3, . . . , p|P∗|) be the reference or target set
of points on the true Pareto-optimal front and A = (a1, a2, a3, . . . , a|A|) be the final ap-
proximate Pareto-optimal set obtained by an MOEA. Then for each point ai in A, the
smallest normalized Euclidean distance to P∗ will be:

di = |P∗|
min
j=1

√√√√ k∑
m=1

(
fm(ai) − fm(pj )

f max
m − f min

m

)2

. (17)

Here, f max
m and f min

m are the maximum and minimum values of the mth objective
function in P∗. The convergence metric is the average value of the normalized distance
for all points in A.

C(A)
	=

∑|A|
i=1 di

|A| (18)

The convergence metric represents the distance between the set of approximate
Pareto-optimal solutions and the true Pareto-optimal fronts. Hence lower values of the
convergence metric represent good convergence ability. Similar metrics were proposed
by Schott (1995), Rudolph (1998), Zitzler et al. (2000), and Van Veldhuizen and Lamont
(2000).

Spacing: Let A be the final approximate Pareto-optimal set obtained by an MOEA.
The function S

S
	=

√
1

|A| − 1

∑|A|
i=1

(d̄ − di)2 (19)
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where

di = min
j

{
k∑

m=1

|fm(ai) − fm(aj )|
}

ai , aj ∈ A i, j = 1, 2, . . . , |A|, (20)

d̄ is the average value of all di , and k is the number of objective functions. A value of
zero for this metric indicates all the nondominated solutions found are equidistantly
spaced in objective space.

4.2 Comparison of NNIA with PESA-II, SPEA2, NSGA-II, and MISA

In order to solve MOPs, many MOEAs have been proposed as mentioned in Section 1.
Following Coello Coello’s recent review of the evolutionary multiobjective optimization
field (Coello Coello, 2005, 2006), NSGA-II, SPEA2, PESA-II, and some others can be
considered as representative of the state-of-the-art in multiobjective optimization. In
this section, NNIA was compared with PESA-II, NSGA-II, SPEA2, and MISA. NSGA-II
was proposed by Deb, Pratap, et al. (2002) as an improvement of NSGA by using a more
efficient nondominated sorting method, elitism, and a crowded comparison operator
without specifying any additional parameters for diversity maintainance. SPEA2 was
proposed by Zitzler et al. (2002) as a revised version of SPEA by incorporating a revised
fitness assignment strategy, a nearest neighbor density estimation technique, and an
enhanced archive truncation method. The revised fitness assignment strategy takes into
account the number of individuals it dominates and that it is dominated by. PESA-II
was proposed by Corne et al. (2001) as a revised version of PESA by introducing a
new selection technique, region-based selection. In region-based selection technique,
selective fitness is assigned to the hyperboxes (Corne et al., 2001) in objective space
instead of the Pareto-optimal individuals. Its update of auxiliary population (external
population) also used the hyperboxes division. MISA (Coello Coello and Cortes, 2002,
2005) may be the first attempt to solve general multiobjective optimization problems
using artificial immune systems. MISA encodes the decision variables of the problem
to be solved by binary strings, clones the nondominated and feasible solutions, and
applies two types of mutation to the clones and other individuals. MISA updates its
external population by using the grid-based techniques used in PAES (Knowles and
Corne, 2000).

We use the simulated binary crossover (SBX) operator and polynomial mutation
(Deb and Beyer, 2001) for NNIA, PESA-II, NSGA-II, and SPEA2. The SBX and poly-
nomial mutation has been adopted in many MOEA papers (Zitzler et al., 2002; Deb,
Pratap, et al., 2002; Deb and Jain, 2002; Khare et al., 2003; Igel et al., 2007). Before the
actual experimentation, some tuning of the parameters involved was required. Finding
the values of parameters for which an MOEA works best is a difficult MOP in itself. We
tuned the parameter values within DTLZ2 and DTLZ3 as Khare et al. (2003) for the best
obtained value of the convergence metric described in Section 4.1. The tuned parame-
ter values are listed in Table 2 where n is the number of variables. Because MISA is a
binary-coded algorithm, the mutation is bit-flip with the probability described in Coello
Coello and Cortes (2005). For SPEA2, we use a population of size 100 and an external
population of size 100. For NSGA-II, the population size is 100. For PESA-II, the internal
population size is 100, the archive size is 100, and the number of hyper-grid cells per
dimension is 10. For NNIA, the maximum size of dominant population nD = 100, the
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Table 2: Tuned Parameter Values
Parameter PESA-II SPEA2 NSGA-II NNIA
Crossover probability pc 0.8 0.8 0.8 1
Distribution index for SBX 15 15 15 15
Mutation probability pm 1/n 1/n 1/n 1/n

Distribution index for polynomial mutation 20 20 20 20
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Figure 4: Statistical values of the coverage of the two sets obtained by NNIA and PESA-
II in solving the 13 problems. Here, box plots are used to illustrate the distribution of
these samples. In a notched box plot the notches represent a robust estimate of the
uncertainty about the medians for box-to-box comparison. Symbol + denotes outliers.
The 13 plots denote the results of the 13 problems respectively. In each plot, the left box
represents the distribution of IC(I, P) and the right box represents the distribution of
IC(P, I).

maximum size of active population nA = 20, and the size of clone population nC = 100.
For MISA, the population size is 100, the size of the external population is 100, the total
number of clones is 600, and the number of grid subdivisions is 25; these four values are
suggested by Coello Coello and Cortes (2005), and the coding length for each decision
variable is 30. It is difficult to formulate the optimal and evidential stop criterion for an
MOEA (Coello Coello, 2005). Researchers usually stop the algorithm when it reaches
a given number of iterations or function evaluations. In this section the number of
function evaluations is kept at 50,000 (not including the function evaluations during
initialization) for all the five algorithms.

In the following experiments, we performed 30 independent runs on each test
problem. Figures 4 to 7 show the box plots (McGill et al., 1978) of NNIA against PESA-II,
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Figure 5: Box plots of the coverage of the two sets obtained by NNIA and NSGA-
II in solving the 13 problems. The 13 plots denote the results of the 13 problems,
respectively. In each plot, the left box represents the distribution of IC(I, N) and the
right box represents the distribution of IC(N, I).

NSGA-II, SPEA2, and MISA based on the coverage of two sets. In the following, I
denotes the solution set obtained by NNIA, P denotes the solution set obtained by
PESA-II, S denotes the solution set obtained by SPEA2, N denotes the solution set
obtained by NSGA-II, and M denotes the solution set obtained by MISA.

As the analysis in Zitzler et al. (2003) shows, 0 < IC(A, B) < 1 and 0 < IC(B, A) < 1
demonstrate that A does not weakly dominate B nor does B weakly dominate A, that
is, A and B are incomparable. But if only the values of coverage are considered, the box
plots of IC(I, P) are higher than the corresponding box plots of IC(P, I) in SCH, DEB,
the five ZDT problems, and the five DTLZ problems, while the box plot of IC(P, I) is
higher than the corresponding box plot of IC(I, P)only in KUR. IC(I, P) denotes the ratio
of the number of solutions obtained by PESA-II which are weakly dominated by the
solutions obtained by NNIA to the total number of the solutions obtained by PESA-II
in a single run. So in a sense (but neither �−compatible nor �−complete), NNIA did
better than PESA-II in SCH, DEB, the five ZDT problems, and the five DTLZ problems,
while PESA-II did better than NNIA in KUR as far as the coverage is concerned.

The comparison between NNIA and NSGA-II and the comparison between NNIA
and SPEA2 in terms of the coverage are similar to the comparison between NNIA and
PESA-II. But NNIA did better than NSGA-II in SCH, DEB, KUR, ZDT1, ZDT3, ZDT6,
and the five DTLZ problems, while NSGA-II did better than NNIA in ZDT2, and ZDT4.
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Figure 6: Box plots of the coverage of the two sets obtained by NNIA and SPEA2 in
solving the 13 problems. The 13 plots denote the results of the 13 problems respec-
tively. In each plot, the left box represents the distribution of IC(I, S) and the right box
represents the distribution of IC(S, I).

Meanwhile, NNIA did better than SPEA2 in SCH, DEB, ZDT4, ZDT6, and the five DTLZ
problems, while SPEA2 did better than NNIA in KUR, ZDT2, and ZDT3 as far as the
coverage is concerned.

The comparison between NNIA and MISA shows that for the five ZDT problems
and the five DTLZ problems, the majority of the solutions obtained by MISA are weakly
dominated by the solutions obtained by NNIA. We estimate that NNIA did better than
MISA in all the problems as far as the coverage is concerned because the box plots
of IC(I, M) are higher than the corresponding box plots of IC(M, I) for all the test
problems. The main limitation of MISA may be its binary representation. Since the
test problems that we are dealing with have continuous spaces, real encoding should
be preferred to avoid problems related to Hamming cliffs and to achieve arbitrary
precision in the optimal solution (Khare et al., 2003). We think it is not appropriate
to compare the performance of a binary-coded algorithm with respect to a real-coded
algorithm, but MISA’s special operators (two types of mutation in Step 8 and Step 9 of
MISA) were designed for antibodies represented by binary strings. However, in a sense,
MISA has the ability to approximate these real-coded algorithms by using the binary
representation with enough coding length.

Figures 8 and 9 illustrate the box plots based on the convergence metric over 30
independent runs for the 13 problems. In this section, for calculating the values of the
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Figure 7: Box plots of the coverage of the two sets obtained by NNIA and MISA in
solving the 13 problems. The 13 plots denote the results of the 13 problems respectively.
In each plot, the left box represents the distribution of IC(I, M) and the right box
represents the distribution of IC(M, I).

convergence metric, we use the set of 200 uniform points on the Pareto-optimal front
as shown in Figure 3.

Figures 8 and 9 show that, for the three low-dimensional problems, all the five
algorithms can obtain values less than 10−2 in almost all the 30 independent runs.
For the five ZDT problems, DTLZ2, DTLZ4, and DTLZ6, the differences between the
corresponding values obtained by NNIA, PESA-II, NSGA-II, and SPEA2 are small.
Hereinto, NNIA did a little better than the others in ZDT1, ZDT4, ZDT6, and DTLZ2.
PESA-II did a little better than the others in ZDT3 and DTLZ6. NNIA and PESA-II
obtained similar values in ZDT2. NNIA, NSGA-II, and SPEA2 obtained similar values
in DTLZ4. For DTLZ1 and DTLZ3, NNIA did much better than the other four algorithms
even though DTLZ1 and DTLZ3 have (11|xk |−1) and (3|xk |−1) local Pareto-optimal fronts,
respectively. Deb et al. (2001) and Khare et al. (2003) claimed that for DTLZ3, both
NSGA-II and SPEA2 could not quite converge onto the true Pareto-optimal fronts in
500 generations (50,000 function evaluations). We have found that PESA-II also did
badly in solving DTLZ3, but NNIA did very well. Overall, as far as the convergence
metric is concerned, NNIA did best in DEB, ZDT1, ZDT4, ZDT6, DTLZ1, DTLZ2, and
DTLZ3 (7 out of the 13 problems).

Figures 10 and 11 illustrate the box plots based on the spacing metric over 30
independent runs for the 13 problems.
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Figure 8: Box plots of the convergence metric obtained by NNIA, PESA-II, NSGA-II,
SPEA2, and MISA in solving the SCH, DEB, KUR, ZDT1, ZDT2, and ZDT3.

Figures 10 and 11 show that SPEA2 did best in nine problems in terms of the di-
versity metric spacing. SPEA2 used an expensive archive truncation procedure whose
worst runtime complexity is O(N3), where N is the number of nondominated individ-
uals. PESA-II and MISA reduced their nondominated individuals using a hyper-grid
based scheme, whose grid size was a crucial factor (Khare et al., 2003). NNIA reduced
nondominated solutions using the crowded comparison procedure (Deb, Pratap, et al.,
2002), whose worst runtime complexity is only O(N log(N )). Except for SPEA2, the box
plots of spacing obtained by NNIA are lower than those obtained by NSGA-II, PESA-
II, and MISA in DEB, ZDT1, ZDT3, ZDT4, ZDT6, DTLZ1, DTLZ3, and DTLZ4 (8 out
of the 13 problems), while PESA-II did the best (excepting SPEA2) in ZDT2, DTLZ2,
and DTLZ6, NSGA-II did the best (excepting SPEA2) in KUR, and MISA did the best
(excepting SPEA2) in SCH. For DTLZ1 and DTLZ3, NNIA did the best in all the five
algorithms because the other four algorithms could not quite converge onto the true
Pareto-optimal fronts. Overall, SPEA2 is the best algorithm in diversity maintenance,
but the differences between the values of spacing obtained by NNIA, PESA-II, and
NSGA-II are inconspicuous.

Overall, considering the experimental results, we can conclude that

(1) For the three low-dimensional problems, all the five algorithms were capable of
approximating the true Pareto-optimal fronts.
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Figure 9: Box plots of the convergence metric obtained by NNIA, PESA-II, NSGA-II,
SPEA2, and MISA in solving the ZDT4, ZDT6, and DTLZ problems.

(2) For DTLZ2, DTLZ4, DTLZ6, and the five ZDT problems, NNIA did the best in
four out of the eight problems in terms of the convergence metric. SPEA2 did
the best in seven out of the eight problems in terms of diversity maintenance.
Except for SPEA2, NNIA did the best in six out of the eight problems in terms
of diversity maintenance.

(3) For DTLZ1 and DTLZ3 problems, NSGA-II, SPEA2, PESA-II, and MISA could
not quite converge on the true Pareto-optimal fronts in 50,000 function evalua-
tions, but NNIA were capable of approximating the true Pareto-optimal fronts.

In the experiments, NNIA and NSGA-II adopt the same heuristic search opera-
tors (simulated binary crossover and polynomial mutation) and archive maintenance
method. NNIA is different from NSGA-II only in its individual selection and cloning
before heuristic search. Therefore, the better performance of NNIA in contrast to NSGA-
II results from the unique nondominated neighbor-based selection method cooperating
with the proportional cloning, which causes the less-crowded individuals to have more
chances to do a heuristic search. NNIA is different from PESA-II, SPEA2, and MISA both
in its way to do selection and in archive maintenance. NNIA also outperformed PESA-
II, SPEA2, and MISA in convergence for the majority of the test problems. Depending
on these empirical comparisons, we conclude that the nondominated neighbor-based
selection technique is effective, and NNIA is an effective algorithm for solving MOPs.
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Figure 10: Box plots of the spacing metric obtained by NNIA, PESA-II, NSGA-II,
SPEA2, and MISA in solving the SCH, DEB, KUR, ZDT1, ZDT2, and ZDT3.

4.3 Comparison of NNIA With and Without Recombination

Most of the existing immune inspired optimization algorithms, especially some pure
clonal selection algorithms, did not use recombination. However, we think that recom-
bination should not be forbidden in AIS community. Some immunologists have claimed
that recombination is a mode of receptor editing used by the B cell antibodies to improve
their affinity (George and Gray, 1999). de Castro and Von Zuben (2002) also claimed that
genetic recombination and mutation are the two central processes involved in the pro-
duction of antibodies, even though they did not use recombination in their pure clonal
selection algorithm CLONALG according to the clonal selection theory (Burnet, 1959).

In Section 4.2, the simulated binary crossover (SBX) was introduced as the re-
combination operator. SBX has been adopted in many MOEA papers (Zitzler et al.,
2002; Deb, Pratap, et al., 2002; Deb and Jain, 2002; Khare et al., 2003; Igel et al.,
2007). In order to identify the improvement produced by SBX, we performed the
proposed algorithm with SBX (denoted by NNIA) and without SBX (denoted by
NNIA-X) for 30 independent runs on each test problem, respectively. The param-
eter settings are the same as Section 4.2. Figure 12 illustrates the box plots based
on the coverage of the two sets obtained by NNIA and NNIA-X. Here, I denotes
the solution set obtained by NNIA, and I−X denotes the solution set obtained by
NNIA-X.
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The comparison between NNIA and NNIA-X in coverage shows the following.
For ZDT1, ZDT2, ZDT3, ZDT4, DTLZ1, DTLZ2, DTLZ3, and DTLZ4, the box plots of

IC(I, I−X) are obviously higher than the corresponding box plots of IC(I−X, I). Therefore,
NNIA did much better than NNIA-X in solving these eight problems as far as the
coverage is concerned.

For SCH, ZDT6, and DTLZ6, the box plots of IC(I, I−X) are slightly higher than the
corresponding box plots of IC(I−X, I). Therefore, NNIA did a little better than NNIA-X
in solving these three problems.

For DEB and KUR, the box plots of IC(I−X, I) are slightly higher than the corre-
sponding box plots of IC(I, I−X). Therefore, NNIA-X did a little better than NNIA in
solving these two problems.

Overall, NNIA did better than NNIA-X in solving 11 out of the 13 problems. NNIA-
X only did a little better than NNIA in solving the two low-dimensional problems DEB
and KUR.

Based on the above empirical results, we did not abandon the recombination in our
algorithm because our aim was to construct a useful algorithm for multiobjective opti-
mization rather than a pure clonal selection algorithm. Furthermore, the recombination
of genes involved in the production of antibodies differs somewhat from the recom-
bination of parental genes in sexual reproduction used in genetic algorithms. In the
former, the recombination on a clone is performed as a crossover between the clone and
a randomly selected active antibody. This method achieved replacement of some gene
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Figure 12: Box plots of the coverage of the two sets obtained by NNIA with and without
SBX, in solving the 13 problems. The 13 plots denote the results of the 13 problems,
respectively. In each plot, the left box represents the distribution of IC(I, I−X) and the
right box represents the distribution of IC(I−X, I).

segments of the clone at random by the corresponding gene segments of the selected
active antibody. But most genetic algorithms involve the crossover of two parents to
generate offspring. However, the similarity between them is also obvious, because the
similarity between biological evolution and the production of antibodies is even more
striking as claimed in de Castro and Von Zuben (2002).

4.4 Scalability of NNIA Along the Number of Objectives

In this section, we will study the NNIA’s scalability in the convergence metric, spacing,
and runtime with respect to the number of objectives. Among the 13 test problems, only
the five DTLZ problems are scalable to have any number of objectives. As suggested by
Deb, Thiele, et al. (2002), DTLZ1 can be used to investigate an MOEA’s ability to scale up
its performance in a large number of objectives, and DTLZ3 can be used to investigate an
MOEA’s ability to converge to the true Pareto-optimal front. Here, DTLZ1 and DTLZ3
with two to nine objectives are used for the empirical study. In order to investigate
the change of these metrics along the number of generations, we set the number of
generations as a considerably larger value of 1,000. Some references have implied that
MOEAs with small population size have difficulty in converging to the Pareto-optimal
front with well-distributed solutions for complicated problems, especially for the MOPs
with more than three objectives (Khare et al., 2003; Tan et al., 2001; Deb, 2001). In order
to abate the influence of population size, here we double the values of population
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Figure 13: Mean values of the normalized convergence metric (the upper plot) and the
spacing (the lower plot) versus number of generations over 30 independent runs when
NNIA solves DTLZ1 with various numbers of objectives. A logarithmic (base 10) scale
is used for the Y -axis.

size, namely, the maximum size of the dominant population nD = 200, the maximum
size of active population nA = 50, and the size of clone population nC = 200. Other
parameters are the same as those in Section 4.2. The number of points on the true
Pareto-optimal front for calculating the values of the convergence metric is 200 when
k = 2 and 3,500 when k = 5, and 1000 when k = 7 and k = 9. Figures 13 and 14 show the
mean values of the normalized convergence metric (Deb and Jain, 2002) and spacing
over 30 independent runs in 1 to 1,000 generations when NNIA solves DTLZ1 and
DTLZ3 with 2, 3, 5, 7, and 9 objectives, respectively.

For DTLZ1, when k = 2, 3, and 5, NNIA obtains the approximate minimum values
of the convergence metric and spacing in no more than 150 generations. When k = 7
and k = 9, NNIA needs to iterate about 350 generations to obtain the approximate
minimum values of the convergence metric and spacing. For DTLZ3, when k = 2, 3, 5,
and 7, NNIA obtains the approximate minimum values of the convergence metric and
spacing in no more than 300 generations. When k = 9, NNIA does not get acceptable
values of the convergence metric and spacing with the population size used here because
DTLZ3 introduces more difficulties to an MOEA in converging to Pareto-optimal front
and in finding a diverse set of solutions (Khare et al., 2003).

Figure 15 shows the running time of NNIA in solving DTLZ1 and DTLZ3 using
the parameters mentioned above. All the values of time are recorded using Matlab 7.0

248 Evolutionary Computation Volume 16, Number 2



Multiobjective Immune Algorithm with NN Selection

0 100 200 300 400 500 600 700 800 900 1000

10
-2

10
0

10
2

Number of Generations

S
p

ac
in

g 
fo

r 
D

T
LZ

3

k=2 k=3 k=5 k=7 k=9

0 100 200 300 400 500 600 700 800 900 1000
10

-6

10
-4

10
-2

10
0

Number of Generations

C
o

n
ve

rg
en

ce
 M

et
ri

c 
fo

r 
D

T
LZ

3 k=2 k=3 k=5 k=7 k=9

Figure 14: Mean values of the normalized convergence metric (the upper plot) and the
spacing (the lower plot) versus number of generations over 30 independent runs when
NNIA solves DTLZ3 with various numbers of objectives. A logarithmic (base 10) scale
is used for the Y -axis.

2 4 6 8 10

0

10

20

30

40

50

60

70

Number of Objectives

R
u

n
n

in
g

 T
im

e
 (

s
e

c
) 

fo
r 

D
T

L
Z

3

total
NNS
search
IDA
UDP

2 4 6 8 10

0

10

20

30

40

50

60

70

Number of Objectives

R
u

n
n

in
g

 T
im

e
 (

s
e

c
) 

fo
r 

D
T

L
Z

1

total
NNS
search
IDA
UDP

Figure 15: Mean values of each operator’s running time and the total running time ver-
sus number of objectives when NNIA solves DTLZ1 and DTLZ3 with various numbers
of objectives.

running on a personal computer with P-IV 3.2G CPU and 2G RAM. The runtime
of the operators including nondominated neighbor-based selection (NNS), cloning,
recombination and mutation (search), update dominant population (UDP), and
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identifying dominant antibodies (IDA), are given, too. It can be seen that the cost
of identifying the nondominated individuals in the population dominates the runtime
complexity of NNIA. It is obvious that the complexity of NNIA along the number of
objectives is approximately linear when the number of generations is the same.

5 Concluding Remarks

We have proposed a novel multiobjective algorithm based on a nondominated neighbor-
based selection technique, an immune inspired operator, two heuristic search operators,
and elitism. In NNIA, the fitness value of nondominated individuals is assigned as the
crowding-distance. The selection technique only performs on nondominated individ-
uals and selects minority isolated individuals to clone proportionally to crowding-
distance values, recombine, and mutate. Some immunologists claimed that the reper-
toire diversity of an antibody underlies the immune response; however, the majority
of antibodies do not play any active role during the immune response (Pannetier et al.,
1995; Cziko, 1995; Baranzini et al., 1999; Parkin and Cohen, 2001). NNIA simulated this
mechanism by selecting only the minority of nondominated individuals with greater
crowding-distance values as active antibodies, and performing proportional cloning,
recombination, and hypermutation only on these active antibodies. It realized the en-
hanced local search around the active antibodies that are the less-crowded individuals
in objective space.

NSGA-II, SPEA2, PESA-II, and some other MOEAs can be considered as different
MOEAs because they adopt different ways to do selection and population maintenance.
In contrast to NSGA-II, the nondominated neighbor-based selection and proportional
cloning make the less-crowded individuals have more chances to do recombination
and mutation. So in a single generation, NNIA pays more attention to the less-crowded
regions of the current trade-off front. The essential difference between NNIA and MISA
is in their different selection methods and population maintenance strategies as well as
individual representation methods. MISA adopts binary representation, clones all the
nondominated individuals (and feasible individuals for constraint problems), and ap-
plies two types of mutation to the clones and other not so good individuals, respectively.
MISA updates its external population by utilizing the grid based techniques used in
PAES which need a crucial parameter, the number of grid cells. The difference between
NNIA and VAIS also lies in their selection and population maintenance strategies. VAIS
adopts the flowchart of opt-aiNet and the fitness assignment method in SPEA2 with
some simplification. VAIS maintains its external population (memory population) us-
ing suppression mechanism like opt-aiNet based on the Euclidean distance in objective
space and a threshold for suppression. We can also find some similar points between
NNIA and PESA-II, PAES, SPEA2, for example, storing the nondominated individuals
previously found externally and reducing the number of nondominated individuals
stored without destroying the characteristics of the trade-off front, because our algo-
rithm is inspired from them.

Most of the immune system inspired optimization algorithms essentially evolve
solutions to problems via repeated application of a cloning, mutation, and selection cycle
to a population of candidate solutions and remaining good solutions in the population.
Just as Hart and Timmis (2005) said, anyone familiar with the EA literature will recognize
all of these features as equally applicable to an EA. It may be due to the striking similarity
between the functioning of the immune system and adaptive biological evolution.
In particular, the central processes involved in the production of antibodies, genetic
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recombination and mutation, are the same ones responsible for the biological evolution
of species (de Castro and Von Zuben, 2002).

The main contribution of this study to MO field may be its unique selection tech-
nique. The selection technique only selects minority isolated nondominated individuals
based on their crowding-distance values. The selected individuals are then cloned pro-
portionally to their crowding-distance values before heuristic search. By using nondom-
inated neighbor-based selection and proportional cloning, the new algorithm realizes
enhanced local search in the less-crowded regions of the current trade-off front. De-
pending on the enhanced local search, NNIA can solve MOPs with a simple procedure.
The experimental study of NNIA, SPEA2, NSGA-II, PESA-II, and MISA in solving three
low-dimensional problems, five ZDT problems, and five DTLZ problems has shown that
NNIA was able to converge to the true Pareto-optimal fronts in solving most of the test
problems. More important, for the complicated problems DTLZ1 and DTLZ3, NNIA did
much better than the other four algorithms. Depending on these empirical comparisons,
we concluded that the nondominated neighbor-based selection method is effective, and
NNIA is an effective algorithm for solving multiobjective optimization problems.

An issue that should be addressed in future research is the population size self-
adaptive dynamic strategy. Some references have implied that MOEAs with small pop-
ulation size have difficulty in converging to the true Pareto-optimal front and obtaining
the well-distributed solutions for some complicated problems (Deb, 2001; Tan et al.,
2001; Khare et al., 2003). The dependence between problem complexity and population
size of NNIA should be solved correctly. However, estimating the correct population
size for a given problem cannot be done a priori as the complexity of the problem
generally cannot be inferred ahead of time. The population size self-adaptive dynamic
strategy using the rate of nondominated individuals or the relation between dominated
and nondominated individuals may be an interesting direction for future research.

The formulation of an efficient stopping criterion for MOEAs has been claimed
as one of the fundamental topics that must be properly addressed in the MOEA area
(Rudenko and Schoenauer, 2004; Coello Coello, 2005). However, it is difficult to for-
mulate the optimal and evidential stop criterion because judging the advance of the
optimization can become as complex as the MOP itself. Furthermore, single-objective
EAs can stop when the fitness does not improve during a given number of generations,
but such a stopping criterion does not easily extend to the multiobjective framework.
Therefore, researchers usually stop the algorithm when the algorithm reaches a given
number of iterations or function evaluations as used in this study. A more appropriate
stopping criterion should be addressed in future research.

Applying an effective constraint-handling technique to the proposed algorithm for
solving constrained MOPs is also planned for our future work.

Most of the existing artificial immune system algorithms for multiobjective opti-
mization are inspired by the clonal selection principle. Some immunological theories
are not well explored in the field of multiobjective optimization, such as Negative Se-
lection (Zhou and Dasgupta, 2007) and Danger Theory (Aickelin and Cayzer, 2002). An
investigation of their potential for multiobjective optimization may be another direction
of future research.
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The Authors’ Annotation

By checking the experimental results seriously and thoroughly, to our regret, we have
to admit that the obtained statistical values of the Coverage of the two sets in solving
the five DTLZ problems are wrong.

From Figure 4 of (Gong et al., 2008), we can see that most of the values of IC(I,P)
and IC(P, I) for the five DTLZ problems are greater than 0.5. Therefore, the major-
ity solutions obtained by PESA-II are weakly dominated by the solutions obtained by
NNIA, while the majority solutions obtained by NNIA are also weakly dominated by
the solutions obtained by PESA-II. Obviously, it could not be true unless most solutions
obtained by NNIA are equal to the solutions obtained by PESA-II. But after examining
the solution sets obtained by NNIA and PESA-II for each trial, we found that identi-
cal solution in both sets is rare. The same situation exists in figure 5, 6, 7, and 12. We
have examined our original codes for calculating the coverage metric in solving the
five three-objective problems, an inadvertent error is found in them. However, for the
two-objective problems, the codes are right.

We have corrected our codes and the right box plots are presented in the following
figures. Note that the errors are only in the five DTLZ problems in terms of the Cover-
age of the two sets. The corrected five figures in this study correspond to the results of
DTLZ problems in Figure 4, 5, 6, 7, and 12 of (Gong et al., 2008) respectively.

The corrected figures show that the box plots of IC(I,P), IC(I,N), IC(I,S),
IC(I,M) and IC(I, I−X) are higher than the corresponding box plots of IC(P, I),
IC(N, I), IC(S, I), IC(M, I) and IC(I−X, I) in all the five DTLZ problems, respectively.
They are consistent with the original conclusions.
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Figure 1: Statistical Values of the Coverage of the two sets obtained by NNIA and
PESA-II in solving the five DTLZ problems. The five plots denote the results of the five
problems respectively. In each plot, the left box represents the distribution of IC(I,P)
and the right box represents the distribution of IC(P, I).
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Figure 2: Statistical Values of the Coverage of the two sets obtained by NNIA and
NSGA-II in solving the five DTLZ problems. The five plots denote the results of the five
problems respectively. In each plot, the left box represents the distribution of IC(I,N)
and the right box represents the distribution of IC(N, I).
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Figure 3: Statistical Values of the Coverage of the two sets obtained by NNIA and
SPEA2 in solving the five DTLZ problems. The five plots denote the results of the five
problems respectively. In each plot, the left box represents the distribution of IC(I,S)
and the right box represents the distribution of IC(S, I).
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Figure 4: Statistical Values of the Coverage of the two sets obtained by NNIA and
MISA in solving the five DTLZ problems. The five plots denote the results of the five
problems respectively. In each plot, the left box represents the distribution of IC(I,M)
and the right box represents the distribution of IC(M, I).
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Figure 5: Statistical Values of the Coverage of the two sets obtained by NNIA with and
without SBX in solving the five DTLZ problems. The five plots denote the results of
the five problems respectively. In each plot, the left box represents the distribution of
IC(I, I−X) and the right box represents the distribution of IC(I−X, I).
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