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Abstract Ill-posed problems are widely existed in sig-

nal processing. In this paper, we review popular regular-

ization models such as truncated singular value decomposi-

tion regularization, iterative regularization, variational regu-

larization. Meanwhile, we also retrospect popular optimiza-

tion approaches and regularization parameter choice meth-

ods. In fact, the regularization problem is inherently a multi-

objective problem. The traditional methods usually combine

the fidelity term and the regularization term into a single-

objective with regularization parameters, which are difficult

to tune. Therefore, we propose a multi-objective framework

for ill-posed problems, which can handle complex features of

problem such as non-convexity, discontinuity. In this frame-

work, the fidelity term and regularization term are optimized

simultaneously to gain more insights into the ill-posed prob-

lems. A case study on signal recovery shows the effectiveness

of the multi-objective framework for ill-posed problems.

Keywords ill-posed problem, regularization, multi-

objective optimization, evolutionary algorithm, signal pro-

cessing

1 Introduction

The idea of ill-posed problem can be traced back to Jacques

Hadamard’s research [1] about one century ago. In his opin-

ion, a problem is well-posed if its solution is existent, unique

and stable. Otherwise, a problem which lacks any of these
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attributes is ill-posed. Most of the inverse problems in

physics, geophysics, medicine, ecology, engineering and eco-

nomics are ill-posed [2].

In this paper, we concentrate mainly on the optimization

methods for regularization-based ill-posed problems within

signal processing. A lot of inverse problems in signal pro-

cessing are ill-posed such as signal recovery and convolu-

tion equation with analytic kernel [3]. Nowadays, researchers

generally use sophisticated methods from geometry, differen-

tial geometry, convex analysis and numerical analysis to han-

dle ill-posed problems in signal processing [4].

The key of handling ill-posed problems is to overcome in-

stability of their solutions. By now, theoretical strategies and

numerical tools have been developed to mitigate this instabil-

ity, and regularization theory has been gradually formed as

a mainstream. The idea of regularization is to replace the ill-

posed problem pointing an oscillating solution with a well-

posed problem for an approximate solution depending con-

tinuously on the given data [5]. Regularization aims at pre-

venting over-fit to the given data by introducing priori infor-

mation of problems to penalize the model. The priori infor-

mation is usually a penalty for complexity, such as restric-

tions for smoothness in total variational regularization [6]

and bounds on the norm of the space vector in Tikhonov

regularization [7, 8]. In order to obtain better compromise

between the loss term and the penalty term, the regulariza-

tion parameters are introduced naturally to adjust the domina-

tor in these two terms according to the application demands.

Nowadays, the idea of regularization is used in many fields

of science. For example, the least squares fit-to-data model:
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min
u
‖Au − f ‖2 can be viewed as a loss term of the ill-posed

problem: Au = f , where A is an ill-conditioned operator. By

using appropriate iterative methods [9, 10], the least square

fit-to-data model can be solved to approximate the original

ill-posed model effectively. From the plot of the solution error

norm against the iteration count in Ref. [11], we are informed

that the iteration count plays the same role as the regulariza-

tion parameter in iterative solving process, this is known as

iterative regularization. There are also some other regulariza-

tion ideas such as regularization by filtering (TSVD observ-

ably) [12].

Regularization ideas simply reform the original ill-posed

model into regularization model by introducing regulariza-

tion terms, but regularization model generally has an optimiz-

ing expression (see variational regularization models [6, 13])

which needs to be solved by effective optimization meth-

ods. Optimization methods used in regularization models can

be roughly classified into three types: 1) methods utterly

depending on differential characteristics of system such as

gradient-based methods, 2) methods using a few about differ-

ential characteristics of system such as iterative-based meth-

ods, 3) methods using nothing about differential characteris-

tics of system such as intelligent optimization algorithms.

Regularization models always need to get a trade-off be-

tween fidelity term and penalty term by adjusting the value

of regularization parameter [14], but what compromise is the

better decision we yearn for? In traditional solving process

of regularization models, the regularization parameter must

be selected at the very beginning, then solution correspond-

ing to the fixed regularization parameter can be obtained by

optimization methods. Once the regularization parameter is

determined, a compromise is following. Thus, the decision-

making (compromise) is prior to the calculation of solution.

By contrast, we are more inclined to make decision from

a series of compromises according to the actual application

needs, namely, the decision-making is posterior to the calcu-

lation of solutions. Multi-objective optimization (MOO) hap-

pens to achieve this goal.

Many real-world problems have several objectives to be

optimized at the same time [15]. For example, the battery

is hoped to have huge volume and small size simultane-

ously, not simply huge volume or small size, for only one of

these two properties is of little significance in real production.

MOO has attracted great concern in recent two decades [15].

Evolutionary algorithms (EAs) are well suited to MOO be-

cause they push a set of current solutions forward simulta-

neously. The resultant methods are termed as evolutionary

multi-objective optimization (EMO). The ability to handle

complex problems [16], involving features such as disconti-

nuities, non-convexity, non-convex feasible region, and noisy

function evaluations, reinforces the underlying effectiveness

of EAs in MOO [17–21]. The main advantages of EMO are as

follows: firstly, EMO can optimize multiple objectives of real

world problems simultaneously instead of scalarizing them

together. Secondly, the regularization problem is essentially a

multi-objective problem. Because multiple objectives can not

be well handled by traditional optimization methods, they are

usually reformulated as an unconstraint single-objective opti-

mization problem. This treatment will lead to negative issues

as described in previous paragraph. EMO can avoid these is-

sues by obtaining a set of nondominated solutions which are

mathematically equal in a single run, so the decision maker

will have more options from these nondominated solutions

according to their preference [22].

In this paper, we firstly explain the ill-posedness reasons
for the original forward model and the modeling process of its

regularization. Thereafter, we review some popular regular-

ization models and corresponding optimization methods. Af-

terwards, a multi-objective framework for ill-posed problems

is established under some in-depth analysis on regularization

model. Finally, a case study of sparse reconstruction based

on the proposed multi-objective framework is conducted to

illustrate the effectiveness of EMO for signal recovery.

This paper is organized as follows: the second section
shows a purpose-driven regularization modeling process for
ill-posed problem. In the third section, we summarize pop-
ular regularization models and corresponding optimization
strategies. In the fourth section, we establish a multi-objective
framework for ill-posed problems. A case study is revealed in
the fifth section. Conclusions and prospects are following in
the final section.

2 The ill-posed forward model and its regu-
larization

In this section, we mainly explain why and how to construct a
regularization model for an original forward problem. Firstly,
we briefly explain reasons for ill-posedness of the original

forward model. Then, an example explaining the formulate
process of regularization model is given under some assump-
tions about the solution and noise. Finally, we roughly ana-
lyze effects of the regularization parameters on the final solu-
tion.

2.1 Regularization model

Inverse problems can be generally formulated as:
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y = F(x) + η, (1)

where y is used to represent the collected noised data, x de-

notes the ideal quantities (desired solution) we pursue for, η

represents the noise and other errors in collection process of

y, and F(·) is related to data collection process and assumed

to be continuous.

The lack of effective observation and bad algebraic spec-

trum distribution related to F(·) may be reasons for ill-

posedness of Eq. (1). An improper observation also leads to

undetermined system whose solution is not unique or nonex-

istent, these characters are determined by algebraical struc-

ture of the matrix Eq. (1). Although the solution of Eq. (1)

exists, it may oscillate frequently because of the bad alge-

braic spectrum distribution related to F(·). In the actual date

collection process, F(·) is a continuous function, but we are

more willing to tackle with the discrete form of problem

Eq. (1), in consideration of computation convenience. How-

ever, the discretization of Eq. (1) will make components of

solution more sensitive to the given data, and thus the discrete

model is more likely to be ill-posed. Therefore, regulariza-

tion ideas are needed to overcome these problems mentioned

above.

Regularization, in a narrow sense, is a term introduced to

inhibit oscillation of solution and prevent over-fit to noisy

data. This term is usually termed as penalty term, which in-

carnates the prior information about the unknown data x with

some essential characteristics (such as smoothness, sparse-

ness or bounds on the vector space norm). By combining with

a fidelity term, the general regularization model can be for-

mulated as:

min
x

: E(x) = L
[
F(x), y

]
+ λP (x) , (2)

where the fidelity term L
[
F (x) , y

]
evolved from the original

forward model Eq. (1) forces F(x) to inherit most features

from the noisy data y, λ > 0 is a regularization parameter that

controls trade-off between these two terms [23]. Occasion-

ally, more than one penalty terms are structured in Eq. (2) for

different intrinsic characteristics of data x (see Ref. [24]).

2.2 Formulate process of the regularization model: an ex-

ample

We are going to explain the purpose-driven modeling process

via specific example. Assuming that F (x) is a linear operator,

i.e., F (x) = Ax, where A is a constant matrix. η is a discrete

Gaussian random vector with zero mean and covarianceσ2 In,

where σ2 is the noise variance. If we are informed from the

priori information that the solution should be smooth, what

should we do to modify the original forward model? From

the assumptions above and Eq. (1), we deduce that the de-

sired solution satisfy the following equation:

‖Ax − y‖2 = ∥∥∥η∥∥∥2

= η′η = E
[(
η′ − Eη′

) (
η − Eη

)]

= E
(
η′η
)
= nσ2. (3)

The above equation can be regarded as constraint on the de-

sired solution. Under this circumstance, we can design proper

regularization matrix to achieve the smoothness of the de-

sired solution. Firstly, the smoothness of the solution can

be achieved via exerting restraints on its derivative. Sec-

ondly, the discrete approximation of the derivative operator

can be modeled in form of matrix. Therefore, we can achieve

smoothness of the desired solution via a matrix, which is

called regularization matrix.

We can simply choose the identity matrix as the regular-

ization matrix (L0 = In) to control the magnitude of the com-

ponents of the solution, but this strategy is powerless when it

refers to smoothness of the solution. At this time, the possible

forms for the regularization matrix can be

L1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 · · · 0 0

0 −1 · · · 0 0
...
...

...
...

0 0 · · · 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, or L1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0

−1 1 · · · 0 0
...
...

...
...

0 0 · · · −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

L1 is called the first-order difference regularization matrix.

The use of discrete approximation of derivative operator in-

stead of the identity matrix is under the following considera-

tions: the rough oscillation of individual components of the

solution caused by noisy data will provoke large ‖L1·‖2, but

not much for the standard norm ‖I·‖2, and thus the former is

more effective in restraining solution oscillation.

However, the discrete approximation of derivative opera-

tors ‖L1·‖ does not necessarily perform better than the stan-

dard norm ‖I·‖ under l2-norm in restraining oscillation of

the solution in some specific cases. Thus, for comprehen-

sive consideration, we can construct the regularization matrix

from the Cholesky factorization of several linearly combined

derivative approximation matrices [25]:

L′L =
∑n

i=1
ωi L′i Li, (5)

where ωi, i = 1, 2, . . . , n are positive weighting factors sat-

isfying
∑n

i=1 ωi = 1. L can also be constructed using other

derivative approximation matrices such as the second-order

difference regularization matrix, etc., or via other approaches

such as statistical information [26].
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Once the regularization matrix is constructed, the regular-

ization model can be established as a constrained optimiza-

tion problem:

min
x

: ‖Lx‖2, subject to ‖Ax − y‖2 = nσ2. (6)

The constraint is deduced in Eq. (3) according to the priori

information about the type and level of noise. The objective

function in minimization problem Eq. (6) can characterize

smoothness of the solution. The smaller value the function

has, the stronger smoothness the solution will have. There-

fore, we can derive a smooth solution satisfying the noisy

constraint from regularization model Eq. (6). Except for the

regularization matrix, one can construct a total variational

term to pursue an edge-preserving smooth solution [6,27,28].

We can also construct other penalty terms according to the

priori knowledge of the solution or noise. For example, a

sparse term can be constructed to characterize the sparse de-

gree of the solution if we are informed that the solution is

sparse.

An unconstrained minimization problem can be con-

structed on the basis of the constrained minimization problem

described in Eq. (6) using Euler-Lagrange method, its form is

min
x

: E (x) = ‖Lx‖2 + α
(
‖Ax − y‖2 − nσ2

)
, (7)

where α is a positive constant that stays to be chosen. This

minimization problem is equal to

min
x

: E (x) = ‖Lx‖2 + α
(
‖Ax − y‖2

)
. (8)

By contrast between Eq. (6) and Eq. (7) or Eq. (8), we find

that the optimal solution of Eq. (6) may not be the optimal

solution of Eq. (7) or Eq. (8), i.e., E (x̂1) � E (x̂2) if x̂1 and

x̂2 are optimal solution of Eq. (6) and Eq. (7), respectively.

Because the optimal solution of Eq. (6) is located in the fea-

sible region of Eq. (7), not the other way around, we can only

achieve an approximate solution from Eq. (7) for Eq. (6) by

altering parameter α.

In order to comply with people’s habits and cognition, we

can reformulate Eq. (8) with λ = 1/α as follows:

min
x

: E (x) = ‖Ax − y‖2 + λ‖Lx‖2. (9)

In the above text, we mainly analyze the establishment pro-

cess of the regularization model from the original forward

model and priori knowledge about the solution and noise.

The construction process of regularization matrix for specific

purpose, the relationship between the original forward model

and the regularization model are also illustrated meanwhile.

In fact, the penalty term can be constructed in other forms

as long as certain purpose can be accomplished. For exam-

ple, total variational term can achieve smooth solutions as

the regularization matrix L does, and it also has its own edge-

preserving character.

We can make a rough analysis on Eq. (9): a regularized

solution can be obtained once a regularization parameter λ is

given. If the value of parameter λ is large, the penalty term

‖Lx‖2 will dominate the value of the objective function E(x),

in order to make the value of E(x) as small as possible, the

penalty term should be as small as possible which will pro-

vide guidance for selection of the solution. However, if λ is

too large, the regularization model Eq. (9) will have little con-

nection with the original model Eq. (1). Conversely, if the

value of parameter λ is small, the fidelity term ‖Ax − y‖2 will

dominate the value of the objective function E(x), in order

to make E(x) as small as possible, the regularized solution

x should be selected to make Ax close to y. In contrast, if λ

is too small, the solution will be over-fit and contain noise.

Therefore, a proper regularization parameter is important for

obtaining a precise and stable solution. The analysis of this

paragraph can also be seen via the optimality condition of

Eq. (9):

E′ (x) = 2A′ (Ax − y) + 2λL′Lx

= 2
(
A′A + λL′L

)
x − 2A′y

= 0. (10)

The regularization model Eq. (2) can be formulated similar to

the modeling process of Eq. (9) for different purposes.

3 A review on the regularization models and
their optimization methods

In this section, we are going to review popular regularization

models and related optimization methods for ill-posed prob-

lems.

3.1 A general regularization model for linear ill-posed

problems

The regularization models for linear ill-posed problems are

much more developed than those for nonlinear ill-posed

problems which are highly related to particular applications.

What’s more, studying linear ill-posed problems is more

likely to obtain good intuition and present novel methods.

For these reasons, linear ill-posed problems were firstly in-

vestigated by researchers, and regularization models and op-

timization approaches were developed in the meanwhile.

The original problem described in Eq. (1) in the previous
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section is a linear problem if function F(x) = Ax, where A
is a M × N linear operator. In this case, Eq. (1) becomes

y = Ax + η. (11)

The task of regularization is to work out an approximation of

the actual solution using the noised data y and the operator

A.

3.2 Truncated singular value decomposition (TSVD) regu-

larization

The linear inverse problem described in Eq. (11) commonly

belongs to rank-deficient or discrete ill-posed problem [25],

which refers to the SVD knowledge of matrix A. The solu-

tion of Eq. (11) can be represented by the SVD system of A
as follows:

x = A†y =
r∑

i=1

u′i yvi

σi
=

r∑

i=1

u′i yexactvi

σi
+

r∑

i=1

u′iηvi

σi
, (12)

where U = (u1, u2, . . . , um) ∈ Rm×m, V = (v1, v2, . . . , vn) ∈
Rn×n and Σ = diag

[
diag(σi)r×r, diag

(
0(m−r)×(n−r)

)]
constitute

the SVD system (U,Σ,V) of matrix A, and A† is the pseu-

doinverse of matrix A [29].

From Eq. (12) of solution x, we can clearly explain the os-

cillation reason for the solution. The two terms on right hand

side of Eq. (12) will converge if the Picard condition [30]

∞∑

i=1

[
(ui, y)
σi

]2
< ∞, (13)

set up. The Picard condition Eq. (13) is identical to the con-

dition that the given data y belongs to the range of A, i.e.,

y ∈ R(A). However, we can deduce that yexact ∈ R(A) due to

yexact = Axexact , but we cannot expect the noise η belongs to

the range of A. Therefore, y = yexact +η � R(A), the solution

x in Eq. (12) is not convergent all because of the oscillation

caused by noise η especially amplified by the reciprocal of

small singular value σi.

By avoiding the use of smaller singular values, one can cal-

culate an approximate solution which is “close enough” to the

exact solution [31]. The numerical ε− rank was structured in

Ref. [32] to determine the one from which the small singular

values should be truncated. Thus, the oscillation of solution

caused by noise η and amplified by the small singular val-

ues can be cut-off. Hansen’s investigation [12] suggested that

the truncated singular value decomposition can be a favorable

alternative to standard-form regularization in the case of ill-

conditioned matrix with well-determined rank. Under some

extra assumptions about the noised data y, the truncated sin-

gular value decomposition can still be a substitution of the

standard-form regularization in case of ill-conditioned ma-

trix with ill-determined rank. Therefore, the TSVD method is

a regularization method for ill-posed problem from a theoret-

ical as well as a practical point of view.

Although the TSVD method can tackle with the standard-

form problem: min ‖x‖2 subject to ‖Ak x − y‖2 minimal,

where Ak
Δ
=
∑k

i=1 uiσivT
i , it does powerless for the ill-

posed problem with general form suggested by Hansen [33]:

min ‖Lx‖2 subject to ‖Ak x − y‖2 minimal. The generalized

singular value decomposition (GSVD) proposed by Van Loan

[34] can be used to calculate the GSVD of the matrix pair

(A, L), then the truncated generalized singular value decom-

position(TGSVD) [35] is capable to solve this general for-

mal problem. The TGSVD method gives better approxima-

tion of the exact solution than TSVD method in the promo-

tion of suitable chosen regularization matrix L. However, the

difficulty for constructing the regularization matrix and high

computational efforts for computing the GSVD of the matrix

pair (A, L) [36] limit the use of TGSVD method. Hansen pro-

posed another approach namely modified TSVD (MTSVD)

[33] combining SVD with approximation in the l1-norm to
avoid the shortcomings of TSVD, this approach is able to de-

tect and provide accurate approximations of discontinuities
in the exact solution. By using auxiliary knowledge about the
exact solution in a novel and natural way, the TPSVD [37]
method can obtain a better approximation of the exact solu-
tion than TSVD and TGSVD methods. A series of singular
value decomposition generalizations such as ΠSVD [38] and
RSVD [39,40] for gradually increased scale of matrices were

subsequently proposed. One can find some applications of
these generalized SVDs in signal processing in Refs. [41,42].
Recently, a novel modified TSVD method in which the oper-
ator A is replaced by a closest matrix in a unitarily invariant

matrix norm was also proposed to yield higher quality ap-

proximate solution than original TSVD [43]. What’s more, a

rescaled GSVD aiming at minimizing the condition number

of the nonsingular matrix A was put forward, and the derived

new truncated GSVD method is competitive with the origi-

nal GSVD method and Tikhonov regularization method with

respect to the quality of computed approximate solution [44].

These methods can not do without an accurate SVD sys-

tem which is most costly by dense linear algebraic methods.

Edo et al. proposed two randomize algorithms which can be

used for constructing low-rank approximation of SVD sys-

tem of matrix A [45]. These two classes of algorithms can

converge faster than classical methods while ensuring com-

parable accuracy. Afterwards, a large amount of researches

sprung up for more high-efficiency randomized methods, e.g.,
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Refs. [46–48].

The effective performance of the truncated singular value

decomposition can not do without a proper criteria for trunca-

tion of the singular values. If a relatively larger eigenvalue is

truncated, too much information involved in matrix A would

be ignored, which leads to an inaccurate solution. Conversely,

if a relatively smaller eigenvalue is not truncated, the noise

contained in the given data y would be enlarged by the small

eigenvalue, and thus a spotted and oscillatory solution might

be obtained. Unfortunately, the truncation has been done

simply in line with one’s intuition (e.g., Refs. [49, 50]) for

a long time. The first formal truncation method is to discard

the eigenvalues on the basis of the F-statistic with different

significance levels [51, 52], but because there is no practi-

cal guidelines in choosing proper significance levels, the F-

statistic criterion often fails to truncate the eigenvalues and

leads to unstable solution. The TSVD method by means of

the L-curve criteria [53, 54] is the best in stabilizing the ill-

posed problem but easily leads to over-cutting of the eigen-

values, and thus results in an inaccurate solution. By contrast,

the quality-based TSVD method by minimizing the MSE of a

solution outperforms the above two methods in terms of sta-

bility and other two indexes [55]. Recently, some new meth-

ods were proposed for choosing proper truncation index, e.g.,

Refs. [56, 57]. The method suggested in Ref. [56] has shown

the least computational cost and the smallest mean square er-

ror compared with the GCV [58] and L-curve methods. The

vector extrapolation was also used for the choice of trunca-

tion index of TSVD [59, 60], the approximate solution ob-

tained by this method is not easy to deteriorate in quality as

the truncation index increases.

With a proper truncation criterion, TSVD methods can ob-

tain a regularized approximation of the exact solution easily

on the whole.

3.3 Iterative regularization

For an ill-posed problem, the type of regularization, the ex-

tra constraints, and a variety of the optimization approaches

should be chosen properly depending on the structure of ma-

trix A. In some cases such as small to moderately sized linear

ill-posed problems, it is wise to use some efficient filtering ap-

proaches such as the TSVD in previous subsection, but more

often it is favorable to use iterative methods in partial or entire

solving process of large-scale problems. Iterative method can

be used as a regularization method for the least squares fit-

to-data model: min
u
‖Au − f ‖2 or a pure optimization method

for the regularization model described in Eq. (2). In this sub-

section, we mainly explain how the iterative methods can be

used to regularize the ill-posed problem described in Eq. (1)

and review some widely used iterative approaches.

From the plot of solution error norm against the iteration

count shown in Fig. 1.6 of Ref. [61], numerical error anal-

ysis in Chapter 5 of Ref. [62], and Ref. [63], we can find

the regularizing properties of iterative approaches: under the

discrete Picard condition, over-smoothly approximate solu-

tion can be yielded for small value of iterative count; con-

versely, the solution would be highly oscillatory as the iter-

ative count becomes too large, this phenomenon is known

as semi-convergence. Therefore, the iterative count plays the

role of regularization parameter, the iterative stop rule plays

the role of parameter choice method, and the related schemes

are known as iterative regularization methods.

Many iterative approaches can be used to regularize the ill-

posed problem, typically, Landweber, semi-iterative, steepest

descent, etc. Most iterative regularization methods can be in-

cluded by a general framework used to solve the minimiza-

tion problem:

min f (x) =
1
2

x′A′Ax − x′A′y, (14)

the iterative methods have the general form:

xk+1 = xk + ρk Mk
(
A′y − A′Axk

)
= xk + ρk Mkrk, (15)

where rk = (A′y − A′Axk). By changing the materials ρk

and Mk in Eq. (15) into specific forms, different iterative ap-

proaches can be obtained as follows:

• By taking ρk = ρ and Mk = I (the identity matrix),

the iteration Eq. (15) represents the Landweber itera-

tive method [9]. This method is always used to ana-

lyze the regularization properties of iterative methods

due to its simple expression [62]. The regularizing ef-

fect of Landweber iterative methods can be reflected by

a filtering factor which is determined by the iterative

count [25], and thus the iterative count plays the role

of regularization parameter. However, the Landweber

iterative method is limited in use because of its slow

convergent rate.

• By introducing different residual polynomials which are

uniformly bounded on [0, 1] and converge pointwise

to 0 on (0, 1], a series of semi-iterative methods, such

as Chebyshev method of Stiefel [64], Nemirovskii and

Polyak [65], the v-method of Brakhage [66, 67] can

be founded. Semi-iterative regularization methods can

work more effectively than the classic Landeweber iter-

ative methods, but it requires the scaling of matrix A.
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• If the matrix Mk is again defined as the identity ma-

trix, and ρk is chosen as the minimizer of the prob-

lem: ρk = arg minρk>0 f (xk + ρk rk), a steepest de-

scent method will be produced. The convergence rate is

upper-bounded related to the condition number of ma-

trix A and the initial iteration point. For ill-conditioned

matrix A, this method is typically converge slowly un-

less with proper preconditioning. A two-point step size

gradient method with better performance and cheaper

computation compared to the steepest descent method

was proposed in Ref. [68] at the cost of extra iteration

and gradient storage.

• If the matrix is set that M0 = I and Mk = I −
sk h′k/

(
h′k sk

)
, where sk = xk+1 − xk, hk = A′A(xk+1 −

xk), ρk is chosen the same as the steepest descent

method, we will obtain the conjugate gradient (CG)

method which is a classical Krylov subspace iterative

method. This method was initially developed for set-

tling sparse systems of equations with a symmetric pos-

itive definite(SPD) coefficient matrix [69,70]. For linear

equation Ax = y, where A is a SPD matrix, it is general

to use a preconditioning MAx = My to improve the

convergence rate of this method by handling spectrum

of matrix A. However, for A is no longer SPD matrix

in ill-posed problems, we are more willing to use a pre-

conditioner to improve parts of eigenvalues of matrix

A to promote the intrinsic regularizing effect [71, 72]

of the CG method. The different implementations of

the CG method will lead to different derivative meth-

ods such as CGLS [29], CGQR [36] (both have pluses

and minuses in different applications), etc. By using the

Ritz values derived from Rayleigh-Ritz method [73],

the regularizing effects and the spectral filtering of the

CG method can be well studied.

There are also many other Krylov subspace methods which

have been studied for regularizing ill-posed problems such as

GMRES, BiCG, QMR. The regularizing effects of these algo-

rithms were presented in Refs. [74,75]. Together with GGLS,

CGS and BiCGSTAB, the regularizing effects of these six al-

gorithms were compared in Ref. [76]. Recently, the IDR(s)

[77] and LSMR [78] algorithms which are state-of-art iter-

ative methods for large-scale linear systems were compared

with CGLS in regularizing ill-posed problems in Ref. [79]. It

turned out that IDR(s) can give satisfactory solution with less

computational cost with discrepancy principle as a stopping

rule and LSMR can produce a more accurate solution with

L-curve method as a stopping rule.

The above discussed algorithms are all impeded by a

semi-convergence behavior, because of which the iterative

count plays the role of regularization parameter. However,

there is a class of iterative shrinkage-thresholding algo-

rithms (ISTAs) [80] which can avoid undergoing the semi-

convergence behaviour. The original ISTA is attractive be-

cause of its simplicity and capability for solving large-scale

problems, but it is limited in use because of its slow con-

vergence rate, which even becomes serious as the observa-

tion operator is ill-conditioned. Different acceleration strate-

gies were successively exploited to overcome its convergent

drawbacks and utilize its advantages mentioned above. The

most popular accelerated ISTAs are fast iterative shrinkage-

thresholding algorithm (FISTA) [81] and two-step iterative

shrinkage/thresholding algorithm (TwIST) [82, 83]. The next

iteration of these two algorithms depends on two or more pre-

vious iterations. Afterwards, more ISTAs such as subband-

adaptive ISTA [84], over-relaxed variant of FISTA [85], im-

proved ISTA [86], exponential wavelet ISTA [87, 88], aF-

PISTA [89], MFISTA [90] were proposed successively. Fur-

thermore, a general iterative shrinkage algorithm (GISA) [91]

was proposed for non-convex lp norm minimization by ex-

tending the soft-thresholding operator. Compared with the

advanced algorithms, namely LUT [92], IRLS [93], ITM-

lp [94], GISA is easier to understand, implement and more

reliable. The convergence result of GISA were also studied

in Ref. [95]. The global and local convergence results of

ISTA and FISTA were certificated in Refs. [96–99], which

would be strong support for applications of ISTAs. As a

necessary numerical tool, iterative methods have been a re-

search focus all the time. Therefore, different classical iter-

ative methods were enriched by introducing various precon-

ditioning techniques, search schemes, termination criterion,

hybrid schemes in different application environments. We are

not intend to have a further discussion on them.

As we mentioned repeatedly above that iterative methods

have the intrinsic regularizing effect, i.e., the spectral com-

ponents associated with large eigenvalues tend to converge

faster than those associated with remained eigenvalues. In or-

der to prevent the noisy components from spotting the itera-

tive solution, we are encouraged to stop the iteration before

the iterative solution starts to diverge. The most widely-used

stopping rule for iterative regularization methods is the dis-

crepancy principle [100] which is terminated at the kth step
∥∥∥y − Ax(k)

∥∥∥
2
� τΔ2 �

∥∥∥y − Ax(k−1)
∥∥∥

2
, (16)

where Δ2 represents the noise level, τ > 1 is a constant.

One can refer to Refs. [101–103] for more variants and em-
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ployments of the discrepancy principle. Error-free parameter

choice methods can also be reformulated as the stopping rule.

This type of methods needs to combine each iterate with the

corresponding objective function such as generalized cross

validation (GCV) [58] method, the knowledge such as the

generalized inverse of the forward matrix A is also essential

requirement. However, the iterative methods are preferred to

tackle problem which has little details about the matrix. Thus,

this type of methods is of little practical use in iterative reg-

ularization methods. The L-curve method is the most popu-

lar regularization parameter choice method in recent years. It

can actually be modified as a stopping rule for iterative reg-

ularization methods, from the approximate smooth L-curve

[53, 54] or log-log scale of the iterative solution norm versus

the residual norm, the knee point can be generally found at

the L-shaped corner. The iterative solution corresponding to

the knee point performs better at balancing the residual er-

ror and the perturbation error. Recently, a few stopping rules

were proposed [104,105] and classic stopping rules were still

investigated [106].

In this subsection, we mainly reviewed the well-known it-

erative methods and explained their regularizing effect with

proper stopping rules. There exist some other iterative regu-

larization methods and stopping rules not involved above, see

Refs. [11,107–109] for more further and systematic informa-

tion.

3.4 Variational regularization

The general form of variational regularization method is

shown as the model described in Eq. (2). Under the condi-

tion of the Gaussian White Noise which is always assumed

in amount of literatures, the fidelity (residual) term has a

quadratic form: ‖y − Ax‖22 [110]. Different types of fidelity

terms can be formulated using the MAP framework presented

in Ref. [110] under different noise settings, for the residual

term is supposed to have the same probability density distri-

bution as the noisy data from a Bayesian standpoint. In this

subsection, we are mainly concerned about the variety of the

penalty terms in model Eq. (2), for different types of penalty

terms are designed for different purposes associated with the

regularized solution. For example, a penalty term with a form

‖x‖22 represents the solution is desired to have minimal Eu-

clidean length.

The earliest use of variational regularization methods can

be tracked back to Tikhonov’s researches on the incorrect

problems [7, 111]. As we analyzed before, the penalty term

generally contains some of the priori knowledge about the de-

sired solution. Therefore, the variational form of the penalty

term has great flexibility, it can be constraints on norm,

smoothness or other structure properties of the desired solu-

tion [112]. Because of the explosion developments of varia-

tional regularization methods in recent years, it is impossible

for us to keep an overview of the analysis, employments and

application results in this brief paper. Therefore, we will re-

view the most popular penalty terms in a comprehensive and

succinct way while other penalty terms briefly.

3.4.1 Tikhonov (l2) regularization

The penalty term of Tikhonov regularization is of the form

‖Lx‖22. In the second section, the formulate process of the

Tikhonov regularization model concentrating on the con-

struction of the regularization matrix and the relationship be-

tween the Tikhonov regularization model and the original for-

ward model was analyzed in detail. The regularization ma-

trix can be identity matrix, first or second-order difference

regularization matrix or decomposition of linear combina-

tion of these individuals for different purposes on the de-

sired solution. In recent years, many results associated with

the Tikhonov regularization have been published including

linear and nonlinear problems with different regularization

parameter choice methods. Convergence rate results have

been explored under specific conditions. For example, Refs.

[113–116] and Refs. [117–122] involve priori and posterior

regularization parameter choice methods, respectively. Be-

cause large amount of regularization parameter choice meth-

ods used for problems with different constraints or bound-

ary conditions will generate various applications which we

can not review one after another, we only review the analysis

tools, regularization parameter choice methods and optimiza-

tion strategies separately.

A variety of numerical and analysis tools have been de-

signed so far to get more insight into a discrete ill-posed prob-

lem. To be specific, the SVD or GSVD of a matrix or matrix

pair and associated low-rank approximation and dimension-

ality reduction are the most important numerical tools in an-

alyzing the structure of the forward operator and the features

of the regularized solution. These analysis tools including the

filter factors, the discrete Picard condition, the errors in the

state and data space, the mean square error matrix and the

averaging kernels are also important tools in analyzing the

effects of regularization parameter and accuracy of the regu-

larized solution. See Refs. [25, 31, 123–127] for details.

The computation of a good approximation to the exact so-

lution depends on a proper selection of regularization param-
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eter, for the regularized solution will either too smooth or too

oscillatory if the regularization parameter is chosen too large

or too small. A regularization parameter choice method de-

pending only on noise level Δ2 is known as priori parameter

choice method such as the expected error estimation method

using information about the errors in state space. By con-

trast, the posteriori parameter choice methods are formulated

by combining the noised data with the noisy level Δ2, e.g.,

the discrepancy principle, the generalized discrepancy prin-

ciple which overcomes the drawback of the discrepancy prin-

ciple for giving too small regularization parameter and un-

dersmooth solution, the error consistency method [128] and

the unbiased predictive risk estimator method [129, 130]. In

semi-stochastic setting, the noisy level Δ2 of the first two

parameter choice methods in deterministic setting should be

replaced by statistical information nσ2 of the noise in data,

and the last two methods can only be formulated in semi-

stochastic setting. The error consistency method is identical

to the discrepancy principle for constant τ = 1, and the reg-

ularization parameter chosen by error consistency method is

smaller than that chosen by discrepancy principle under the

condition τ > 1, and thus the error consistency method shares

the same defect as the discrepancy principle. The predictive

error can replace the exact solution error and get accurate es-

timation using the unbiased predictive risk estimator method,

but the valley of predictive risk estimator can be very flat

for large value of regularization parameter λ, thus leading to

difficulty in choosing a proper regularization parameter. No

matter what setting it is, error-free parameter choice meth-

ods mentioned in above text can be formulated because these

methods only need to know the noised data. To be specific,

the generalized cross-validation method using the ratio of the

residual norm and the degree of freedom for noise as func-

tion, which has a minimum because both of the numerator

and denominator are increasing functions of regularization

parameter, but it has the same phenomenon as the unbiased

predictive risk estimator method if the discrete Picard condi-

tion is satisfied. The maximum likelihood estimation can be a

favorable method in overcoming the shortcomings of the gen-

eralized cross-validation and the unbiased predictive risk es-

timator methods. The quasi-optimality criterion can also find

a balanced solution between the smoothness and noise error

under certain assumptions, but it is often caught in local min-

ima. As revealed before, the L-curve method is not only an

analytical but a visual method which can be carried on in an

analytical or numerical way. Similarly, the so-called resid-

ual curve method [107], generalized residual curve method

[64,107,131] and flattest slope method [132] are all this type

of methods which chooses the regularization parameter cor-

responding to a point on special bends of the curve.

In recent few years, some new regularization choice meth-

ods such as quadratic programming-based method [133], bal-

ance discrepancy principle [134], heuristic rule [135], adap-

tive regularization choice method [136] were exploited. Some

classic or new regularization choice methods were compared

under the conditions of exact-estimate, underestimate and

overestimate error levels [137]. The performance of some

known or new regularization choice methods was also in-

vestigated for LSQR method under inaccurate estimation of

noise level in Ref. [138]. Once the regularization parameter

is determined, the regularized solution can be obtained.

In the presence of noise, a regularized solution with ideal

accuracy might be unavailable by the Tikhonov regulariza-

tion method, it can be improved by the so-called iterative

Tikhonov regularization. The first iteration step of iterative

Tikhonov regularization is as usual, while an improved solu-

tion step is formulated to modify the present solution starting

from the second iteration step. For sufficiently large mod-

ify steps, the accuracy of the regularized solution can not

be improved significantly by any other methods. The pro-

cedures of iterative Tikhonov regularization are available

in Refs. [139–141]. Usually, the regularization parameter is

fixed, but Brill and Schock had investigated a non-stationary

iterative Tikhonov regularization method [142] in which the

regularization parameter is a variable depending on the iter-

ation steps. A linear convergence rate has been established

under a geometric parameter sequence for non-stationary it-

erative Tikhonov regularization method [143], and the dis-

crepancy principle has been used to obtain an optimal ac-

curacy. What’s more, the non-stationary iterative Tikhonov

regularization method was shown to be superior than its sta-

tionary counterpart and sophisticated ordinary Tikhonov reg-

ularization on simplicity of implementation, computational

complexity and accuracy of reconstruction. Recently, some

effective projected nonstationary iterative Tikhonov regular-

ization methods were also put forward for reducing dimen-

sion of large-scale problems [144–146]. All these iterative

Tikhonov regularization methods are optimization methods

for Tikhonov regularization model.

3.4.2 Total variational regularization

One of the original regularization methods proposed in image

processing which minimizes the Sobolev norm of the result-

ing image
∫

R2 |∇u|2dxdy performs well in reducing the oscil-

lation of the resulting image, but it can do nothing in recov-
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ering the discontinuities (edges) and oscillatory textured pat-

terns. Rudin, Osher, and Fatemi were motivated to formulate

a total variational (TV) regularizer [6] in bounded variational

(BV) space, this TV term is a non-smooth convex regular-

izer which evaluates the sparse gradients (or sparse deriva-

tive) of the resulting data. Therefore, with the TV regularizer

as a penalty term, the regularization model ought to promote

edge-preserving in sharp regions and noise removal in flat re-

gions simultaneously in theory, which was later confirmed to

be true in Ref. [147]. The unconstrained version of the model

in Ref. [6] was formulated under the condition of Gaussian

noise [148] as

min
x∈BV(Ω)

∫

Ω

(x − y)2dΩ + λ
∫

Ω

|∇x| dΩ, (17)

the second term in Eq. (17) is the TV regularizer multiplied

by the regularization parameter λ, which restrains the amount

of oscillation of the resulting data. While the fidelity term in

Eq. (17) measures the Euclidean distance between x and y,

which forces the resulting data to inherit most features from

the noisy data. Overall, the geometric regularity of the result-

ing data x can be well imposed by restraining the oscillation

while preserving sharp edges with an altering regularization

parameter λ.

The image restoration problem was solved using a deter-

ministic least squares framework firstly by Hunt [149]. Ac-

cording to Hunt, the choice of regularization parameter λ re-

quires a priori knowledge of the noise variance. However,

a number of researches (e.g., Ref. [150]) have shown that

the choice of λ oversmooths the solution. A set-theoretic

formulation for image inverse problem was used by Kat-

saggelos et al. in Refs. [151, 152]. A ellipsoid bounding

of the smoothed data was used in this set-theoretic method

for choosing the regularization parameter, and a very good

restoration of the noised data was then produced. However,

the ellipsoid bounding was not known in most cases. A novel

algorithm for TV-based image reconstruction and parameter

estimation was proposed using variational distribution within

the hierarchical Bayesian formulation, and the competitive

performance without any extra assumptions was shown in

Ref. [153]. Different iterative schemes were also designed for

different image restoration tasks, see e.g., Refs. [154, 155].

During the iteration, the regularization parameter was auto-

matically chosen to guarantee the current restored image sat-

isfying the discrepancy principle. Similarly, inspired by the

better performance of unbiased predictive risk error (UPRE)

method in Tikhonov regularization-based image restoration,

an extended UPRE which relies on linear relationship be-

tween regularized solution and data was proposed in Ref.

[156]. As a regularization parameter choice method, a sta-

tistically unbiased estimate of mean square error-Stein’s un-

biased risk estimate (SURE) depending on the noisy data and

estimated image was presented in Ref. [157]. Afterwards, a

novel Monte-Carlo technique was used to enable the estima-

tion of SURE via stochastic ways [158], this estimation is

quite good with no exaggerated computational cost as pre-

sented in Ref. [159]. The performance of these above meth-

ods relies on an accurate estimation of the noisy level. Oth-

erwise, the regularized solution will be oversmooth or retain

noise. A TV-based image restoration method was exploited

in Ref. [160], the generalized cross-validation method was

used to determine the value of regularization parameter in

each restoration step. Furthermore, multi-scale TV-based reg-

ularization model with multiple spatially dependent regular-

ization parameters was formulated in Refs. [161,162], for the
regularization parameter in original ROF model is a global
parameter which does not satisfy local piecewise smoothness
constraints in all image regions.

Total variational term can not be minimized directly
because it is nondifferentiable at zero. The first ap-
proach succeeding in regularizing is its smoothed form
∫

Ω

√

|∇x|2 + β2dx using the associated Euler-Lagrange equa-

tion, but the Euler-Lagrange equation is still very stiff to

solve. Lots of numerical methods for TV minimization have

been excavated till now. The ideas of these methods are in-

spirations from various fields. Some particular mentioned

categories are Newton-type methods, dual/primal-dual meth-

ods, Bregman iterative methods, graph cut methods, and

programming methods. The steepest descent method and

Newton-type method can be applied to TV-based regular-

ization model, but the search strategies of these two types

of methods often need to compute the minimization of the

penalty term in each iteration step, which is computational

costly. An alternative to these above two types of methods is

the lagged diffusivity fixed point iteration [163] which avoids

the referred drawbacks above, but the hessian matrix of the

penalty term which is difficult to obtain or does not exist

is also needed for Newton-type methods and lagged diffu-

sivity fixed point iteration. Dual and primal-dual methods

are used frequently recently because they are very fast in

practice. Many novel ideas and techniques can be induced

from the numerical optimization of dual formulation. Primal-

dual methods can make use of information from the primal

and dual spaces. Actually, the dual and primal-dual prob-

lems have to face some inevitable numerical difficulties, e.g.,

the rank deficient objective and the constraints need to deal
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with. Chan, Golub, and Mulet (CGM) firstly formulated a

primal-dual system involving a primal and dual variable syn-

chronously [164]. Because the component in Euler-Lagrange

equation corresponding to the smoothed total variational term

is singularity, Chan et al. introduced an auxiliary variable

to eliminate this singularity and presented a global conver-

gence using Newton’s method coupled with a simple line

search scheme. This method can be understood well intu-

itively. Chambolle [165] proposed a pure dual method which

is the first to solve the exactly problem described in Eq. (17)

rather than its approximation. By simplifying the KKT sys-

tem of the discretized objective, Chambolle proposed a semi-

implicit scheme which settles Eq. (17). This algorithm con-

verges fast for denoising problem, but when confronting other

problems in which A is usually ill-conditioned, the condi-

tion of the semi-implicit scheme will be too stringent. Huang

et al. [166] and Bresson and Chan [167] proposed a spliting

method which is modeled as

min
x,v

G (x, v) =
1
2
‖Kx − y‖2 + μ

2
‖x − v‖2 + λ‖∇v‖1, (18)

the objective function can be minimized against x and v
in turn, and thus the minimization problem described in

Eq. (18) can be regarded as Tikhonov regularization and TV-

based denoising problem in turn. Therefore, Eq. (18) can

be solved using methods from Thikhonov regularization and

TV-based denoising problem, Chambolle’s scheme can still

be used for TV-based denoising in part of the whole process.

The KKT system can also be written as a semi-smooth system

which can be solved using a semi-smooth Newton’s method

[168], and this method usually has a superlinearly conver-

gence rate under some proper conditions. In order to use ad-

vantages of both primal and dual spaces, Zhu and Chan pro-

posed the primal-dual hybrid gradient method which uses the

dual form instead of the primal total variational term [169],

and minimizes the objective function against the primal and

dual variables alternatively. Iteration strategies and numer-

ical performance are illustrated in Refs. [169, 170]. In re-

gard to anisotropic discrete of TV norm with bilaterally con-

straint on dual variable, Hintermöller and Kunisch proposed

the primal-dual active-set (PDAS) algorithm which has a su-

perlinear convergence rate, but this method can only be ap-

plied to isotropic discrete of TV norm. A nonnegatively con-

strained CGM method in which the primal and dual variables

are treated as in the PDAS and CGM methods separately

was proposed in Refs. [171, 172]. The optimality conditions

of primal-dual problem are shown to be semi-smooth and

can be solved superlinearly using a semi-smooth Newton’s

method. This method can be applied to both the isotropic and

anisotropic discrete forms of TV norm.

The Bregman iteration method proposed by Osher et al.

[173] has been generalized for many convex inverse prob-

lems. The original Bregman iteration method can bring back

the loss signal by solving a sequence of ROF models, but it

may bring the noise back if the iteration is not terminated un-

til convergence. The split Bregman iteration method proposed

in Ref. [174] can avoid this drawback because it converges to

the solution of the ROF model, and the split Bregman itera-

tion method can be interpreted as a forward-backward split-

ting method from the view of spliting method. In Eq. (9), if

1/λ is an equivalent infinitesimal of ‖Lx‖2, then λ‖Lx‖2 may

have no obvious change along with the regularization param-

eter λ, therefore the trade-off role of λ will no longer ob-

vious. The augmented Lagrangian method [175] can handle

this awkward situation perfectly. What’s more, many popu-

lar methods such as CGM and Chambolle’s dual methods,

are connected to the augmented Lagrangian method, the split

Bregman iteration method is also equivalent to the augmented

Lagrangian method, see Ref. [176] for details.

Graph cut methods Refs. [177, 178] are being popular re-

cently, for these methods are fast and they can achieve global

optimal solution even for nonconvex problem. Whether the

objective function is levelable is crucial for using graph cut

method, fortunately, the total variational function satisfies

this condition. For anisotropic discrete TV norm, a quadratic

objective function with linear constraints can be formulated

by introducing two auxiliary variables [179], then solved by

a standard primal-dual interior-point methods. However, if

we encounter isotropic discrete TV norm, the above meth-

ods will not work. A second-order cone programming com-

bined with a interior-point scheme was considered in Ref.

[180] to handle this problem, but this method will incur too

many variables and thus enlarge the scale of the problem.

Except for these methods reviewed above, the majorization-

minimization (or majorization-maximization) is also a well-

studied method in optimization and it can be applied to TV-

based inverse problem [181, 182], the effectiveness of this

method depends largely on the choice of surrogate function.

As shown in the MAP framework presented in Ref. [110],

the fidelity term in the total variational based model is de-

termined by the noisy form contained in the collected data.

The ROF model formulated under the Gaussian noise in

the Bayesian framework is under the consideration of con-

venient analysis. However, we may encounter other forms

of noise in some applications such as Laplace noise, Pois-

son noise, multiplicative noise. Total variational regulariza-

tion models under these forms of noise and corresponding
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numerical methods can be found in Refs. [183–189]. Dif-

ferent space norms for the fidelity term have also been in-

vestigated (cf. Refs. [190, 191]). There are several variants

of total variational term for different desires: multichannel

and matrix-valued TV were proposed for handling multiple

perspectives, high dimension datum [192, 193] and discrete

TV were designed for procedure implementation [194, 195],

smoothed TV was needed for applying numerical techniques

conveniently [164].

As we known, the classical local TV based image recov-

ery inevitably confronts staircase edges and block artifacts.

Some schemes such as improved steepest descent projection

[196], a fourth-order TV based scheme [197] were initially

presented to relieve the piecewise constant effect substan-

tially. Thereafter, the nonlocal TV was formulated to elim-

inate these drawbacks more effectively [198, 199]. Recently,

new high-order TV [200, 201], novel nonlocal TV [202], and

fractional order TV [203] were successively proposed for

better elimination of staircase effects. A non-convex hybrid

TV [204] was proposed at almost the same time which can

retain more valuable edges while eliminating staircase effect

compared with high-order TV models. We are not intend to

have in-depth analysis due to the large amount of literatures

about TV regularization model, one can refer to relevant lit-

eratures for specific total variational regularization model.

3.4.3 Sparse and low-rank regularization

Compressive sensing (CS) has brought about many striking

ideas to signal restoration since it was proposed by Donoho

et al. [205–209]. We can get a thorough understanding of lp

norm-based regularization model for ill-posed problems from

the sparsity of the regularized solution, which is the key tar-

get in compressive sensing. CS relies on the empirical ob-

servation that signals can be represented sparsely in terms

of a suitable basis, commonly a sparse dictionary. With a

proper sparse dictionary ψ, the signal z can be represented

by a sparse signal θ, i.e., z = ψθ. We make an observation

on signal z with an underdetermined measurement operator

Φ shown as

H = Φz, (19)

combining with the sparse representation, Eq. (19) becomes

H = Φψθ, (20)

by denoting ACS = Φψ, the problem recovers z from H is

transformed into recovers θ from H. Although Eq. (20) is

still an underdetermined problem, the unknown components

of variable θ decrease largely compared to variable z because

of its sparsity. The opportunistic point of Eq. (20) is that the

sparse dictionary ψ can be designed without knowing the sig-

nal z but to make it sparse just right. However, in order to en-

sure the existence of the solution for Eq. (20), the matrix ACS

should have at least 2K random linearly independent columns

for K-sparse signal θ [210]. If the signal z is compressible

under sparse dictionary ψ and matrix ACS meets the require-

ment above, we can obtain an unique approximate solution of

Eq. (20) by solving the minimization problem

min
θ
‖θ‖0 s.t. H = Φz = Φψθ, (21)

considering the observed signal H is always noised, the con-

straint in Eq. (21) should be corrected as ‖H −Φψθ‖2 � ε
for robust. the constraint can also be set up based on the l1
norm for large and impulsive noise [211,212]. Unfortunately,

the l0-norm optimization is non-convex and the combinato-

rial minimization problem described in Eq. (21) is NP-hard

in general [213]. Therefore, greedy strategies such as match-

ing pursuit algorithm [214] and orthogonal matching pursuit

[215], iterative thresholding algorithm [216], FOCUSS [217]

and convex relaxation approach [207] are dug out to tackle

this problem. The application of greedy algorithms is time-

consuming and the global optimum can not be guaranteed.

The iterative thresholding algorithm can be applied with little

time expense, but it is sensitive to the noise in data and only

guarantees to find local optimum. A proximal method which

can be fast and converge to a stationary point was proposed

in Ref. [218] for l0 minimizations recently.

The convex relaxation l1 regularization is a landmark work

because it indeed promotes sparsity in a convex environment.

In fact, the TV regularizer mentioned above is evidently that

the l1 norm acts on gradient domain of the recovery data.

Thus, it can provide recovery data with sparse gradients,

which is the reason why TV penalty term can promote edge-

preserving in sharp regions and noise removal in flat regions

simultaneously. The theoretical proofs for equivalence of l1
and l0 -norm in promoting sparsity under the frame of RIP

and RIC were given in Refs. [207, 219–221]. Therefore, var-

ious sophisticated convex optimization techniques can be ap-

plied for the sparse solution. The l1-minimization problem

under Gaussian noise reads

min
θ
‖θ‖1 s.t. ‖H −Φψθ‖2 � ε, (22)

which is also known as the basis pursuit problem [222], it can

be transformed into an unconstrained minimization problem

using Lagrange method

min
θ

Eλ (θ) =
1
2
‖H −Φψθ‖2 + λ‖θ‖1. (23)
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In order to make sure an unique sparse solution of Eq. (23),

the matrix ACS has to meet the restricted isometry property

(RIP) which still has difficulty at present. Nevertheless, the

combination of mutual coherence coefficient, spark [210] and

RIC of matrix ACS in analyzing the recovery condition from

sensing model described in Eq. (22) does make sense. Equa-

tion (23) can be solved by similar procedures as in Tikhonov

and TV regularization models once the above condition is

met. What’s more, the minimizer of Eλ can be solved ex-

plicitly by soft-thresholding the components of H if the sens-

ing matrix ACS is the identity. If the matrix ACS is a general

linear operator, the solution can be approximately computed

by soft thresholded Landweber iteration methods proposed in

Refs. [223–225].

Unfortunately, the RIP condition of matrix ACS can hardly

be satisfied when the undetermined measurement matrix Φ

is ill-conditioned. Therefore, based on this finding, Herrholz

and Teschke [226] introduced a sampling function Fs to-

gether with a proper design of ψ to diagonalize Φ into Λ,

and consider the following problem

min
θ∈B(l1,R)

Eλ (θ) =
1
2
‖G − FsΦψθ‖2 + λ‖θ‖2, (24)

where B (l1,R) =
{
θ ∈ l2

∣∣∣‖θ‖l1 � R
}

is a bounded set,

G = FsH, and the selection of Fs and ψ should bring

FsΦψθ = FdΛθ into existence. This variational formulation

allows the treatment of ill-posed problems in the context of

compressively sampled data. A different combination way of

l1 and l2 constraints used for the so-called elastic net regular-

ization was given in Ref. [227].

If the signal itself is sparse, the sparse dictionary is no

longer needed and the observation matrix A is equivalent to

the sensing matrix. Therefore, the l1-norm-based models

min
x
‖x‖1 s.t. ‖Ax − y‖2 � ε, (25)

and

min
x

Eλ(x) =
1
2
‖Ax − y‖2 + λ‖x‖1, (26)

were frequently used for sparse reconstruction recently, see

e.g., [222, 228–230]. Equation (25) can be solved by the rep-

resentative algorithms: gradient projection (GP) [228, 229],

ISTAs [80, 81, 231], proximal gradient (PG) [232], homo-

topy [230, 233] and augmented Lagrange multiplier [212].

One can choose the regularization parameter of Eq. (26) in

the same way as used in Tikhonov regularization and solve it

using gradient projection sparse representation (GPSR) [228]

and truncated Newton interior-point method (TNIPM) [229].

We also have [234] which explained the conflict between two

terms of Eq. (26) and exploited a new way to solve this model

using multi-objective optimization.

The non-Lipschitz lp (0 < p < 1) norm-based minimiza-

tion is another technique to relieve the awkward situation

that the RIP condition is difficult to meet. Chartrand [235]

has generalized the result of Ref. [236] to demonstrate that

non-Lipschitz lp (0 < p < 1) regularizer can recover sparse

signal perfectly under weaker RIP conditions than l1 regular-

izer in the noise-free setting. The experiments in Ref. [235]

also indicated that non-Lipschitz lp regularizer requires fewer

measurements for exact reconstruction than l1 regularizer,

and decreasing p requires decreasing number of measure-

ments. What’s more, depending on the same RIP condition

and the noise level, the non-Lipschitz lp regularizer provides

better theoretical guarantees in respect of stability and ro-

bustness than l1 regularizer according to Ref. [237]. For ex-

ample, the l1 regularizer is untalented when the data errors

have heavy tail process [238], and it often suffers from esti-

mation bias [239] and sparsity insufficient problems. Fan and

Li [240] urged that the penalty functions ought to be singu-

lar at the origin to promote sparsity, and its gradients should

be zero for large variable values to promote unbiasedness.

Following these guidelines, some fruitful penalty functions

have been proposed for various purpose. For example, the

smoothly clipped absolute deviation (SCAD) [240] function

and the Zhang’s function [239] are unbiased penalized esti-

mators, the Logarithm and fraction penalty functions [241]

are expert in edge-preserving, the non-Lipschitz lp penalty

has oracle property in statistical community [242, 243].

Due to recent ardour on sparse presentation and com-

pressed sensing, we are mainly concerned with the research

progress of the non-Lipschitz lp regularizer which is a bet-

ter alternative to l1 regularizer according to the above state-

ments. Although the non-Lipschitz lp regularizer can promote

competitive solution with less measurements and weaker RIP

conditions compared with l1 regularizer, it is difficult to solve

efficiently because the lp minimization model is nonsmooth

and nonconvex. Although the theoretical guarantees for solu-

tion optimality and algorithm convergence do not seem to be

available, some typical algorithms actually work well in prac-

tice for non-Lipschitz lp regularization. According to Ref.

[244], these typical algorithms can be classified into three

kinds: iteratively reweighted l1 minimization (IRL1) [245],

iteratively reweighted least squares (IRLS) [246] (including

its general form GIRLS), and iteratively thresholding method

(ITM) [247]. The former two kinds of algorithms can be used

to solve both unconstrained and constrained lp minimiza-

tions, while the latter one can only solve unconstrained lp
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minimizations.

Through a clever shift, IRL1 and IRLS transform the lp

regularization problems into a series of reweighted l1 and l2
regularization problems, respectively. Then, the convex opti-

mization algorithms can be used to handle these reweighted

problems. In ITM, the iterative scheme for the final solution

depends on the so-called thresholding function. However, the

reweighted l2 regularization problems can not promote sparse

solution, which violates the original intention of using the

non-Lipschitz lp regularizer. Therefore, the IRLS algorithm

will have poor achievements in promoting sparsity compared

with the IRL1 and ITM unless a threshold strategy is used.

What’s more, the ITM without any stepsize search always

maintains a global convergence property [94], while the IRL1

and IRLS can hardly guarantee a global convergence. The

systematically comparison of the performance of these three

algorithms was also conducted in Ref. [244].

Because decreasing p (p ∈ (0, 1)) requires decreasing mea-

surements, weakening RIP conditions and increasing com-

plexity, a proper p is important for better performance of lp

regularization. Xu et al. [248] revealed that l1/2 regularizer

has unbiasedness, sparsity and oracle properties, and their ex-

periments [249] showed that l1/2 regularizer is effective and

efficient, and could be taken as a representative of the lp regu-

larizer. Because the l1/2 regularizer is a specific lp regularizer,

algorithms for lp minimization are all applicable to l1/2 mini-

mization.

Apart from the classical sparse constraint, the low-rank can

be interpreted as a sparse constraint on matrix. For the fit-

to-data model: min
u
‖Au − f‖2, the structural information of

matrix A is not fully utilized. Considering of this, some rank

minimization models such as regularized nuclear-norm mini-

mization problem [250] and first order singular value thresh-

olding (SVT) problem [251] were proposed. As fundamental

problems, there are many algorithms can be applied to solve

these problems such as alternating direction method of mul-

tipliers (ADMM) [252,253], proximal point algorithm [254],

alternating direction method [255] and so on. One can easily

find more algorithms from a large amount of literatures.

In order to reduce the complexity in the solving process

of Eq. (22), low-rank characteristic was imposed on the

sparse learning dictionary by clustering the similar patches

in Ref. [256]. The experiment results showed that their pro-

posed LRSR algorithm performs better than or is compara-

ble with some state-of-art algorithms in denoising and tex-

ture recovery. This idea from matrix decomposition can be

used for signal recovery because corrupted two-dimensional

signal can be conformed into a matrix, then the matrix can be

decomposed into a low-rank part and a sparse part. Based

on the robust principal component analysis (RPCA), Wa-

ters et al. proposed a SpaRCS algorithm [257] which can be

used to separate out the noisy components from noised sig-

nal. For example, Li et al. supposed the degraded HSIs con-

sist of a low-rank signal component and a structural sparse

noise component, and proposed a novel algorithm based

on RPCA [258]. The simulated and real data experiments

demonstrated their assumptions and presented promissing de-

noising results. Zhou and Tao proposed a more general algo-

rithm GoDec [259] which considers the noise part in their

model. Based on this algorithm, Zhang et al. proposed a new

Hyperspectral image restoration method [260] which can fur-

ther remove the mixed noise such as Gaussian noise, impulse

noise, stripes, etc.

It is worth mentioning that Zhang, et al. [261] roughly cat-

egorized the sparse representation models into five groups

based on the norm used for regularizer, namely l0, lp (p ∈
(0, 1)), l1, l2,1, and l2 group. The available algorithms for

sparse representation were also classified into four groups,

namely greedy strategies, constrained optimization methods,

proximity algorithms, and homotopy algorithms. They also

conducted a comparison study of these representative algo-

rithms. For more details, readers may refer to Ref. [261]. Now

that we have had a thorough retrospect on different regular-

ization models and their optimization algorithms, We find and

list some well-known packages for the implementation of the

well-known algorithms in Table 1. The available website and

description for each package are shown in this table, the cited

references, demo files and user guides are also available at

the corresponding website.

3.5 Discussion on fidelity term

So far, we have concentrated our mainly attention on various

penalty terms, but seldom concerned with the form of the

fidelity term. In fact, when non-Gaussian noise and nonlin-

ear forward model are encountered, the fidelity term will no

longer have quadratic or convex form. For example, when

the noise in forward model follows a Laplacian, Poisson or

Multiplicative distribution, various fidelity terms can be de-

duced by means of the MAP framework [110]. Readers can

get insight into the concrete forms of these fidelity terms in

Ref. [110]. In addition, several other fidelity terms also have

been studied based on different motivations recently. For ex-

ample, the dual norm of BV, the Wasserstein metric, the l1
space norm and the dual Sobolev norm were used as a fidelity

term respectively in Refs. [164, 191, 262, 263]. Different reg-

ularization models with various fidelity terms ought to have
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Table 1 Available websites and brief descriptions for some well-known packages

Package name Website Brief description

YALL1 (YALL1-Group) http://yall1.blogs.rice.edu/ Provides the implementation of alternating direction algorithm for l1 minimizations (for
group sparsity problems)

l1_ls http://www.stanford.edu/
∼boyd/l1_ls/

Developed for problems with large amount of variables or large density

Homotopy http://users.ece.gatech.
edu/sasif/homotopy/

Provides the implementation of homotopy techniques for some l1 minimization problems

Sparselab http://sparselab.stanford.edu A well-known package for sparse representation and compressed sensing, it provides lots
of famous algorithms for sparse modelings, such as Lasso, BP, MP, OMP, and IST

L1General https://www.cs.ubc.ca/
∼schmidtm/Software/
L1General.html

Mainly focuses on algorithms which require calculation or storing of Hessian or approxi-
mate Hessian, such as some gradient-based and soft-thresholding algorithms

SLEP http://parnec.nuaa.edu.
cn/jliu/Softwares.htm

Mainly provides the implementation of the families of Lasso algorithm, such as fused
Lasso, group Lasso, and sparse group Lasso

different existence, uniqueness and convergence characteris-

tics with their solutions, which becomes an active research

field.

3.6 Summary on the regularization methods

In above subsections, we mainly reviewed the frequently used

regularization methods for linear ill-posed problems, includ-

ing TSVD, iterative regularization, variational regularization

such as Tikhonov, TV-based and the sparse regularization.

The truncation behavior of TSVD, iterative count of iteration

regularization do play the same role as the regularization pa-

rameters in variational regularization methods in our analysis.

Nonlinear problems are highly related to the particular appli-

cations, the practical and theoretical mansions are much more

easily built up in linear cases, models for nonlinear problem

are usually linearized and parts of the approaches for nonlin-

ear problems are generalized or inspired from those for linear

problems [4, 25, 62].

The function mechanism of the filter operator in TSVD

regularization has been in-depth analyzed associated with

matrix decomposition up to now. Its use in nonlinear prob-

lems is limited because nonlinear operator can hardly con-

duct a singular value decomposition. If the nonlinear opera-

tor is linearized, the analysis of TSVD may be inaccurate. As

for the Tikhonov regularization for nonlinear ill-posed prob-

lems, the step-length and trust region methods base on Taylor

expansion are proved to be effective. The step-length method

needs the implementation of searching direction, computing

step length and accurate terminating. The optimization meth-

ods of Tikhonov regularization for linear ill-posed problems

can be used in each iterative step to improve stability of this

method and reduce the total iteration steps. Thus, the solv-

ing process of a nonlinear ill-posed problem is equivalent to

solving a sequence of ill-posed linearizations via Tikhonov

regularization in each iterate [62]. The step-length method

chooses a shorter step on a restrained direction, but the trust

region method searches in any direction within a restrained

region for the minimizer. The iterative regularization meth-

ods for linear ill-posed problems are also generalized and en-

riched for nonlinear problems such as nonlinear Landweber

iteration, Newton-type methods, asymptotic regularization,

and multilevel or level set methods [4, 62, 264].

The numerical tools and theoretical framework of itera-

tive and Tikhonov regularization for linear and nonlinear ill-

posed problems have tended to be mature. However, the total

variation regularization used for nonlinear ill-posed problems

remains to be explored, mainly including the existence and

uniqueness of solution especially for nonconvex problems,

the solving strategies and wide applications for different ar-

eas. As an active field, there are many directions in sparse

regularization waiting to be explored, which can not be listed

exhaustively. For example, the extension of sparse regular-

ization towards nonlinear measurements and high-dimension

problems has a strong need for developing highly adaptive

algorithms, the measurement matrix and sparse dictionary

which highly conform to the signal features are eager to get

further research. Except for these practical aspects, theoreti-

cal guarantees for stable accomplishment of algorithms also

need to be enriched, a necessary and sufficient condition for

unique sparse solution of sparse regularization models is still

a key problem. What’s more, a combination of other signal

priori and its sparse priori knowledge may exploit high qual-

ity recovery.

4 A multi-objective framework for ill-posed
problems

In this section, we intend to introduce some foundations of
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multi-objective optimization and construct a multi-objective

framework for ill-posed problems under some rational analy-

sis.

4.1 Introduction to multi-objective optimization

A multi-objective optimization problem (MOP) is normally

defined as follows [17–19]:

min
x

F(x) =
[
f1(x), f2(x), . . . , fn(x)

]T

s.t. gi(x) � 0, i = 1, 2, . . . , k;

hl(x) = 0, l = 1, 2, . . . , e, (27)

where n is the number of objective functions, k and e are

the number of inequality and equality constraints separately.

x ∈ Rm is a vector of decision variables. F(x) ∈ Rn is

a vector of objective functions, F(x) : Rm → Rn. The

feasible decision space X is defined by the constraints as{
x
∣∣∣gi(x) � 0, i = 1, 2, . . . , k; h j(x) = 0, j = 1, 2, . . . , e.

}
. The

feasible cost space Y is defined as {F(x)|x ∈ X}.
Compared with the single-objective optimization, the out-

come of multi-objective optimization process is more of a set

of mathematically equally trade-offs than just a single solu-

tion. The set of trade-offs is defined as follows.

Definition 1 A point x∗ ∈ X is Pareto optimal if and only

if there does not exist another point x ∈ X, such that fi (x) �
fi (x∗) ,∀i = 1, 2, . . . , n, and fi (x) < fi (x∗) for at least one

function, i.e., the point x dominates x∗ in general terms.

All these Pareto optimal points make up a set which is

known as Pareto optimal set [265], and their corresponding

Pareto optimal objectives are called the Pareto optimal front

(PF) [265]. Dynamically to see, a Pareto optimal solution

with some superior objectives inevitably has some inferior

objectives compared to other Pareto optimal solutions. Thus,

it can be deduced that objectives in multi-objective optimiza-

tion problems are conflict to each other.

The multi-objective problem is solved by a variety of

methods with a priori articulation of preferences tradition-

ally [266]. However, these methods sometimes can not reflect

decision maker’s desires perfectly as is expected. By contrast,

methods incorporating a posteriori articulation of preferences

which are also called generate-first-choose-later approaches

are more favorable to decision makers because of their capac-

ity for handling preference information [266]. Remarkably,

the EAs as global optimization techniques can generate a set

of solutions simultaneously, it is suitable for searching Pareto

optimal set of multi-objective optimization problems, and the

methods generated by EAs used in multi-objective optimiza-

tion are referred to as multi-objective evolutionary algorithms

(MOEAs) [17–19].

According to our survey on multi-objective evolutionary

algorithms in Refs. [267], MOEAs can be classified into three

continuously improving stages. The MOGA [268], NSGA

[269] and NPGA [270] are representatives of the first stage,

where the selection of individuals and diversity of popula-

tion are based on the Pareto dominance and fitness shar-

ing mechanism, respectively. The MOEAs of second stage

have been put forward since the use of external continu-

ously updated population for storing nondominated solutions

in SPEA [271]. The improved SPEA which was named as

SPEA2 [272] was proposed two years later by Zitzler et al,

and the SPEA2+ [273] was proposed soon after to improve

the strength of SPEA2. Similarly, other methods such as the

PAES [274] and its updated versions PESA [275] and PESA-

II [276] were gradually proposed. Compared with these al-

gorithms, the modified algorithm of NSGA namely NSGA-II

has found its pervasive applications beacause of its low com-

putational overhead, elitist and parameter-less sharing ap-

proach [277]. Most famously, a multi-objective evolutionary

algorithm based on decomposition (MOEA/D) [278] can de-

compose the MOP into a number of subproblems, these sub-

problems can be optimized by scalar objective local search

strategies naturally. Hybrid MOEAs are also useful algo-

rithms which hybridize different techniques to utilize their

advantages for tackling complicated MOPs. Since the put for-

ward of the MOEA/D, a variety of variant algorithms with

different decomposition methods [279, 280], different repro-

duction operators [281], different local search operators [282]

and different dominance mechanisms [283] and so on were

successively proposed for better performance. Recently, a

reference-point based NSGA-II namely NSGA-III [284] was

exploited to handle many objective problems. A number of

well-spread reference points were supplied and updated adap-

tively for diversity of population members. By introducing

non-dominated sorting scheme, a θ-NSGA-III [285] was ob-

tained for better compromise between convergence and di-

versity in many objective optimization. Soon after, a uni-

fied evolutionary optimization algorithm U-NSGA-III [286]

was proposed to unify mono-objective problems, bi-objective

problems and three or more objective problems, the simu-

lation results showed that this unification is excellent and

worthy of further application. In a word, by introducing ad-

vanced schemes in different stages of evolvement, some effi-

cient evolution algorithms with specific superiorities can be

obtained such as the MOMA [287] with a novel path encod-

ing scheme and a specific evolutionary operator, the MGFE
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[288] with a novel fitness evaluation function and a pruning

local search scheme, and the LSH-MOMA [289] with a col-

laborative strategy of MOEA and a locality-sensitive hashing

(LSH) based search scheme. These algorithms are proposed

for problems with different characteristics and all verified to

be effective by the experiments therein.

4.2 Motivation for modeling ill-posed problems as MOPs

From the subsection of TSVD regularization and variational

regularization, we know that the penalty term aims at using

priori knowledge of the exact solution and indirectly restrain-

ing the noise amplified by the small singular values of ob-

servation matrix, while the regularization parameter is to ex-

pand this restraint. We are going to illustrate the relationship

between fidelity term and penalty term together with the reg-

ularization parameter.

In order to analyze easily, we assume that the function L(x)

and P(x) are convex. Because the regularization parameter is

positive, the objective function E(x) is a convex function as

well. Several facts can be deduced as follows:

• Function L(x) and P(x) can not have the same mini-

mizer. Otherwise, these two function will increase or

decrease at the same time according to the properties

of convex function. Therefore, the penalty term could

not play any active role, not to mention its regularizing

effect. Assuming x1 and x2 are the minimizer of L(x)

and P(x) separately (x1 � x2), then the values of func-

tion L(x) and P(x) will change conversely for shifting

points on the line segment x1x2. The global minimizer

of function E(x) will generate in regions where the val-

ues of L(x) and P(x) have negative correlation rather

than positive correlation.

• In order to make our analysis intuitionistic, the fidelity

term L(x) and the penalty term P(x) of Eq. (2) are re-

garded as the vertical and horizontal axes separately, see

Fig. 1. The conflicts between these two terms shown

in Fig. 1 can be proven reasonable by the frequent

use of L-curve method for choosing proper regulariza-

tion parameters, e.g., Refs. [53, 54]. The curve shape

of objective function versus variable x is plotted as in

Fig. 2 according to its convexity. We can link these two

figures together by plotting a series of contour lines:

L(x)+λP(x) = C in Fig. 1. The searching process of the

minimizer in Fig. 2: x1 → x2 → · · · → x∗ corresponds

to the update process of coordinates: (P (x1) , L (x1))→
(P (x2) , L (x2)) → · · · → (P (x∗) , L (x∗)) in Fig. 1. The

point of tangency (P(x∗), F(x∗)) of curve l with slope

−λ1 in Fig. 1 corresponds to the minimizer x∗ of ob-

jective E(x) in Fig. 2. If we change the regularization

parameter λ, the point of tangency with slope −λ and

its preimage x∗ will change correspondingly. To be spe-

cific, if the parameter λ increases, the penalty term will

decrease and the fidelity term will increase. If λ de-

creases, the opposite result will be received. These con-

clusions are in accordance with the analysis in above

text.

• For the convex function E(x), if the optimization meth-

ods for minimization problem described by Eq. (2) con-

verges, it converges to the global optimal x∗ which lies

in the Pareto optimal set of multi-objective problem:

minx {L (x) , P(x)}. Otherwise, there must be an Pareto

optimal solution x′ in Pareto optimal set which domi-

nates x∗, i.e., L (x′) � L (x∗) , P (x′) < P (x∗) or L (x′) <
L (x∗) , P (x′) � P (x∗). Therefore, E(x′) < E(x∗), x∗

is not the optimal solution, which deduces a contradic-

tion. If the Pareto optimal set of multi-objective prob-

lem can be guaranteed by some optimization methods,

the decision maker would prefer to select the ideal one

from the Pareto optimal set rather than obtain a unique

solution with a settled parameter in advance. New op-

timization approaches and Pareto dominance strategies

are continuously put forward for this purpose. There-

fore, multi-objective optimization has a hopeful future

in coping with ill-posed problems.

• For nonlinear ill-posed problems, optimization ap-

proaches for regularization models such as Newton-

type methods, have to overcome a series of extra dif-

ficulties like gradient. While multi-objective optimiza-

tion should consider nothing about these problems but

an increase of computational work by taking advantages

of its global optimization techniques.

Fig. 1 E(x) as the linear programming of L(x) and P(x) via λ
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Through the above analysis on convex function, we can

conclude some characters of regularization problems which

are suitable for introducing multi-objective optimization.

Firstly, the minimizer of objective E(x) lies in the regions

where fidelity term and penalty term are conflict, multi-

objective optimization is just right for handling conflict ob-

jectives. Secondly, the choice of regularization parameter di-

rectly influences the minimizer of Eq. (2), but the magnitude

of the influence is not easy to control. By contract, the Pareto

optimal set of multi-optimization is more conducive for de-

cision maker to choose from. Thirdly, optimization methods

for better approximation of Pareto optimal set are put for-

ward successively, which makes the use of multi-objective

optimization in ill-posed problems possible. What’s more,

multi-objective optimization can be used for nonlinear ill-

posed problem just with an increase of computational work

compared with its use for linear ill-posed problem.

Fig. 2 The searching demo for the minimizer of objective function

4.3 Establishment of multi-objective framework for ill-

posed problem

Now that the feasibility of multi-objective framework has

been affirmed fully, we can simply reformulate the regular-

ization problem Eq. (2) as

min
x
{L(x), P(x)} , (28)

the advantage of this reformulation is that it eases the burden

of users for determining the regularization parameter before

solving the problem described in Eq. (2). To speak further,

the users are able to exact more knowledge of the problem

and choose their preferred solution from the Pareto optimal

set of Eq. (28).

However, it is unadvisable for us to study multi-objective

optimization trapped within regularization models. In fact,

the concrete forms of fidelity term and penalty term are not

mentioned in analyzing their contradictory relationship. That

is to say, we might as well get rid of thinking bondage from

regularization model and directly confront the ill-posed prob-

lem described in Eq. (1). We can construct multiple objec-

tives from the original ill-posed problem Eq. (1), according

to the application requirements and even use some of them at

the same time. In general, the multi-objective problem can be

modelled as

min
x
{H(x)} , (29)

where H(x) is a vector of no less than two objectives. It

should include a fit-to-data objective which reproduces the

major information of the actual solution and a elaborately

designed objective which collects our desirous details. Cer-

tainly, various objectives can be designed to pursue different

types of details such as texture and smoothness.

The most popular mean square error (MSE) and relative

error can be used as fit-to-data objective, these error mea-

surements with other space norms can also be used as fit-to-

date objective. Generally speaking, the construction of multi-

ple objectives should be conflict to each other, and objectives

should be convenient for practical operation. For example,

two unusual conflict objectives for restraining noise and pre-

serving details separately are proposed in Ref. [290] for better

performance of change detection.

However, the multiple objectives are usually not easy to

tackle because of the large dimension of the decision vector.

It seems impossible for global search schemes to search for

global optimal in such a large decision space within an ac-

ceptable time cost. Therefore, some schemes such as cluster-

ing process [291] and sparse representation are used to reduce

the dimension of decision space.

5 A simple case study on multi-objective
sparse reconstruction

In this section, we mainly investigate the performance of

multi-objective optimization together with EA used in sig-

nal recovery. For simplicity, we use the sparse constraint and

the square error as two conflict objectives as follows:

min
x

H(x) =
{
‖Ax − y‖22 , ‖x‖0

}
. (30)

5.1 Effects of dimension of observation matrix A on signal

recovery by EMO

As we know, how much information can be observed from

signal is determined by the dimension of observation matrix

A, that is, of course, the rows number of Matrix A. In the

condition of less than or equal to the number of columns,

the more rows A has, the more information of signal will be

recorded. Nevertheless, the reservation of the signal does not
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need to be observed completely because of the sparsity of

signal. Therefore, we intend to investigate the effects of rows

number of matrix A on signal recovery.

The experiment is set as follows: the length of signal is

fixed at 2 000, the sparsity ratio (S − ratio) of signal is fixed

at 0.05, 0.15, 0.30 separately. The fidelity term ‖Ax − y‖22 and

relative error ‖x − x0‖2/‖x0‖2 (RE) versus the sparsity ratio of

recovery signal x are shown in Fig. 3.

From the first column denoted by S − ratio = 0.05, we

can find that the optimal solutions in the knee region of the

Pareto front have almost the same sparsity ratio as the exact

signal x0. What’s more, the value of fidelity term ‖Ax − y‖22
of solutions in the knee region is getting closer to the noise

level ‖Ax0 − y‖22 = Δ as rows number of matrix A increases.

Therefore, the optimal solutions in knee region have not only

the similar sparsity to the exact signal but also the accept-

able fidelity error referring to the noise level. These conclu-

sions can also be obtained by analyzing details of column

S − ratio = 0.15 and S − ratio = 0.25. In addition, the

relative error of Pareto optimal solution increases with the

increasing sparsity ratio of x0 and decreases with the increas-

ing rows number of matrix A, seeing the lower left corner

subfigure of Fig. 3 exhibits perfect performance of recovery.

Furtherly, from each row which has the same scale matrix A
of Fig. 3, we can simply find that the knee region moves to-
ward the corresponding area of the exact signal, and thus the
solution in knee region will maintain the similar sparsity ratio
as the sparsity ratio of the exact signal changes from 0.05 to
0.15, then to 0.25, But these details are not enough to draw
a conclusion. We are intend to anatomize the effect of signal
sparsity ratio on its recovery.

5.2 Effects of sparsity ratio of signals on its recovery by

EMO

In the previous experiment, we have aware of that the knee

region of Pareto front will follow suit of the exact signal in

Fig. 3 Under different sparsity ratio settings, the Pareto front of bi-objective problem described in Eq. (30) changes as the rows number of
matrix A increases. For the left, middle and right column, S − ratio are 0.05, 0.15 and 0.25, respectively
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changing sparsity ratio. We are going to explore deeply by

further experiments. Going on with the experiments of last

three rows shown in Fig. 3, we continue to increase the spar-

sity ratio of signal x0 and see the changes of the knee region

of Pareto front. By combining the subfigures with the same

rows number in Figs. 3 and 4 together, we can observe that

optimal solutions in the knee region of Pareto front can keep

pace well with the exact signal x0 in sparsity ratio when the

sparsity of x0 is strong, e.g., subfigures of the same row in

Fig. 3. However, as the sparsity ratio of x0 continues to in-

crease, the solutions in knee region are unable to well ap-

proximate the exact signal x0 any longer because they are

far away from x0, e.g., subfigures of the same row in Fig. 4.

Nevertheless, although we can not approximate the exact sig-

nal by solutions in the knee region of Pareto front, we can

still use other solutions in the Pareto front to achieve good

approximation because there are still some other solutions in

Pareto front close to x0, e.g., Fig. 4.

From the above discussion, we can conclude that the exact

signal can be well approximated by solutions in the knee re-

gion of Pareto front if it is sparse enough. If the signal is not

sparse enough, we can still choose a good approximation of

it from the Pareto front as long as we have priori knowledge

about the sparsity ratio of the signal.

5.3 Average estimation error of EMO

We still use EMO to reconstruct the signal repeatedly and

compare its average estimation error (estimation of average

relative error) with these of other advanced sparse reconstruc-

tion methods read as Orthogonal Matching Pursuit (OMP)

[215], Homotopy Methods [230], L1LS [229], PFP [292],

Alternating Direction Method (ADM) [212], SPARSA [293],

and FISTA [81], respectively.

The experiments are set as follows: the length of exact sig-

nal is fixed at 2 000 and the trial is repeated ten times for

each experiment. For the first experiment, the sparsity ratio

of exact signal is fixed at 0.10, the average estimation errors

of eight algorithms are investigated by varying rows num-

ber of matrix A from 500 to 1 900 at a step of 100. For

the second experiment, the dimension of matrix A is fixed

at 1 600 ∗ 2 000, the average estimation errors of eight algo-

rithms are investigated by varying signal sparsity ratio from

0.1 to 0.6 at a step of 0.05. The average estimation errors of

eight algorithms in the above two experiments are shown in

Figs. 5(a) and 5(b).

As shown in Fig. 5(a), when the rows number of matrix

A is small, the average estimation errors of EMO and other

seven algorithms will reduce more or less as the rows number

Fig. 4 Under different rows number settings of matrix A, the Pareto front of bi-objective problem described in Eq. (30) changes as sparsity
ratio of x0 increases. For the left, middle and right column, S-ratio are 0.05, 0.15 and 0.25, respectively
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Fig. 5 Average estimation error of EMO compared with these of other
seven algorithms versus (a) varying rows number of matrix A, (b) varying
sparsity ratio of signal x0

increases, this is because the increased scale of matrix A is

able to record some extra information of the exact signal. As

the rows number continues to increase, the average estima-

tion errors of Homotopy and OMP algorithms are the earliest

to stop to reduce, closely followed by these of other algo-

rithms except for EMO, the average estimation error of EMO

does not stop to reduce untill the rows number increases to 1

300. What’s more, the average estimation error of the EMO

gets to less than these of other algorithms when rows number

exceeds 800. The average estimation error of EMO is much

less than these of other algorithms when all of them are sta-

bilized at their stage.

As shown in Fig. 5(b), The average estimation errors of

OMP, Homotopy and PFP algorithms are obviously lager

than these of other five algorithms. For small sparsity ratio

of signal, the EMO outperforms other four algorithms in ac-

curacy. As the sparsity ratio increases, the average estimation

errors of all the eight algorithms will increase at the same

time. Nevertheless, the EMO algorithm can match the L1LS

algorithm which is the optimal in other seven algorithms.

To summarize, The EMO outperforms the other seven

sparse reconstruction algorithms in reconstruction accuracy

against the varying rows number of observation matrix and

varying sparsity ratio of signal on the whole.

6 Concluding remarks

In this paper, we illustrated a purpose-driven modeling pro-

cess of regularization, during which we explained the con-

struction of regularization matrix and the effects of regular-

ization parameter. Then, we reviewed the most widely used

regularization models such as TSVD, iterative regulariza-

tion, variational regularization and so on. Meanwhile, we ex-

plained the regularizing effects of these models and summa-

rized their corresponding optimization methods. In the latter

part of this paper, we established a multi-objective framework

for ill-posed problems after some in-depth analysis on regu-

larization model. A case study on signal recovery showed fa-

vorable results and demonstrated the high accuracy of EMO

compared with some advanced algorithms.

There are many merits of using EMO framework for ill-

posed problems. Firstly, the choice of regularization param-

eter in regularization model is avoided. Secondly, the EMO

framework can obtain a set of nondominated solutions in a

single run, which are conducive to decision-making. Finally,

EMO can well handle complex problems [234,294,295]. Re-

cently, researchers have realized the effectiveness of EMO

in signal processing [234], image processsing [296] and ma-

chine learning [291, 297–300]. In these applications, the ob-

jectives were constructed to meet the demand and purpose of

problem, the algorithms were also designed to generate di-

verse optional objective combinations. In addition, the EMO

together with designed algorithms exhibited superiority in

some aspects. For example, in Ref. [296], the selected bands

are supposed to have less numbers and contain much infor-

mation simultaneously in band selection for hyperspectral

images. Therefore, the number of selected bands and infor-

mation entropy are designed as two conflict objectives. The

designed EMO algorithm can obtain a series of band sub-

sets with different numbers. Researchers have also proved

that EMO can overcome the difficulty that limits the use of

greedy algorithm in some NP-hard problems [294, 295].

We hope to explore more practical use of MOO in ill-

posed problems because of its advantages. There are some

guidelines for applying MOO to a specific ill-posed problem.

Firstly, multiple objectives should be designed as contradic-

tory as possible to model a MOP according to the demands of

problem. Secondly, efficient MOO algorithms should be de-

signed to optimize the established MOP. EAs are encouraged



Maoguo GONG et al. Optimization methods for regularization-based ill-posed problems: a survey and a multi-objective framework 383

to apply to MOO, because they can well handle complex

features of problems such as discontinuity, non-convexity,

non-convex feasible region and so on. Cooperating with EAs,

there are several EMO frameworks to choose from, specif-

ically, domination based framework, indicator based frame-

work and decomposition based framework. We should select

proper EMO framework and design appropriate schemes for

diversity and convergence according to characteristics of the

problem. Finally, priori information for a specific problem

can be introduced in the process of EMO such as the ini-

tialization, the design of genetic operators, the selection of

the final solutions. Following the above guidelines, we are

going to exploit effective algorithms for further use of EMO

in image processing, signal processing and machine learning.
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